Python chainer.initializers.HeUniform() Examples
The following are 6
code examples of chainer.initializers.HeUniform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.initializers
, or try the search function
.
Example #1
Source File: rnn_cells.py From knmt with GNU General Public License v3.0 | 5 votes |
def create_initializer(init_type, scale=None, fillvalue=None): if init_type == 'identity': return initializers.Identity() if scale is None else initializers.Identity(scale=scale) if init_type == 'constant': return initializers.Constant(fillvalue) if init_type == 'zero': return initializers.Zero() if init_type == 'one': return initializers.One() if init_type == 'normal': return initializers.Normal() if scale is None else initializers.Normal(scale) if init_type == 'glorotNormal': return initializers.GlorotNormal() if scale is None else initializers.GlorotNormal(scale) if init_type == 'heNormal': return initializers.HeNormal() if scale is None else initializers.HeNormal(scale) if init_type == 'orthogonal': return initializers.Orthogonal( scale) if scale is None else initializers.Orthogonal(scale) if init_type == 'uniform': return initializers.Uniform( scale) if scale is None else initializers.Uniform(scale) if init_type == 'leCunUniform': return initializers.LeCunUniform( scale) if scale is None else initializers.LeCunUniform(scale) if init_type == 'glorotUniform': return initializers.GlorotUniform( scale) if scale is None else initializers.GlorotUniform(scale) if init_type == 'heUniform': return initializers.HeUniform( scale) if scale is None else initializers.HeUniform(scale) raise ValueError("Unknown initializer type: {0}".format(init_type))
Example #2
Source File: qlearning.py From malmo-challenge with MIT License | 5 votes |
def _build_model(self): initializer = HeUniform() in_shape = self.input_shape[0] return [L.Convolution2D(in_shape, 64, ksize=4, stride=2, initialW=initializer), L.Convolution2D(64, 64, ksize=3, stride=1, initialW=initializer), L.Linear(None, 512, initialW=HeUniform(0.1)), L.Linear(512, self.output_shape, initialW=HeUniform(0.1))]
Example #3
Source File: qlearning.py From malmo-challenge with MIT License | 5 votes |
def _build_model(self): initializer = HeUniform() in_shape = self.input_shape[0] return [L.Convolution2D(in_shape, 32, ksize=8, stride=4, initialW=initializer), L.Convolution2D(32, 64, ksize=4, stride=2, initialW=initializer), L.Convolution2D(64, 64, ksize=3, stride=1, initialW=initializer), L.Linear(7 * 7 * 64, 512, initialW=HeUniform(0.01)), L.Linear(512, self.output_shape, initialW=HeUniform(0.01))]
Example #4
Source File: qlearning.py From malmo-challenge with MIT License | 5 votes |
def _build_model(self): initializer = HeUniform() in_shape = self.input_shape[0] return [L.Convolution2D(in_shape, 64, ksize=4, stride=2, initialW=initializer), L.Convolution2D(64, 64, ksize=3, stride=1, initialW=initializer), L.Linear(None, 512, initialW=HeUniform(0.1)), L.Linear(512, self.output_shape, initialW=HeUniform(0.1))]
Example #5
Source File: qlearning.py From malmo-challenge with MIT License | 5 votes |
def _build_model(self): initializer = HeUniform() in_shape = self.input_shape[0] return [L.Convolution2D(in_shape, 32, ksize=8, stride=4, initialW=initializer), L.Convolution2D(32, 64, ksize=4, stride=2, initialW=initializer), L.Convolution2D(64, 64, ksize=3, stride=1, initialW=initializer), L.Linear(7 * 7 * 64, 512, initialW=HeUniform(0.01)), L.Linear(512, self.output_shape, initialW=HeUniform(0.01))]
Example #6
Source File: nets.py From text-gcn-chainer with Creative Commons Zero v1.0 Universal | 5 votes |
def __init__(self, adj, labels, feat_size, dropout=0.5): super(TextGCN, self).__init__() n_class = np.max(labels) + 1 initializer = initializers.HeUniform() with self.init_scope(): self.gconv1 = GraphConvolution(adj.shape[1], feat_size) self.gconv2 = GraphConvolution(feat_size, n_class) # This Variable will not be updated because require_grad=False self.input = to_chainer_sparse_variable( sp.identity(adj.shape[1])) self.adj = adj self.labels = labels self.dropout = dropout