Python optimization.AdamWeightDecayOptimizer() Examples

The following are 30 code examples of optimization.AdamWeightDecayOptimizer(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module optimization , or try the search function .
Example #1
Source File: optimization_test.py    From uai-sdk with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #2
Source File: optimization_test.py    From coref with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #3
Source File: optimization_test.py    From MedicalRelationExtraction with MIT License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #4
Source File: optimization_test.py    From BERT-for-Sequence-Labeling-and-Text-Classification with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #5
Source File: optimization_test.py    From dl4marco-bert with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #6
Source File: optimization_test.py    From pynlp with MIT License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #7
Source File: optimization_test.py    From pynlp with MIT License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #8
Source File: optimization_test.py    From adapter-bert with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #9
Source File: optimization_test.py    From training with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #10
Source File: optimization_test.py    From training with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #11
Source File: optimization_test.py    From BERT-sentiment--classification with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #12
Source File: optimization_test.py    From BERT_STS-B with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #13
Source File: optimization_test.py    From KBQA-BERT with MIT License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #14
Source File: optimization_test.py    From bert-qa with MIT License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #15
Source File: optimization_test.py    From delft with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #16
Source File: optimization_test.py    From SIGIR19-BERT-IR with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #17
Source File: optimization_test.py    From BERT-Classification-Tutorial with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
        with self.test_session() as sess:
            w = tf.get_variable(
                "w",
                shape=[3],
                initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
            x = tf.constant([0.4, 0.2, -0.5])
            loss = tf.reduce_mean(tf.square(x - w))
            tvars = tf.trainable_variables()
            grads = tf.gradients(loss, tvars)
            global_step = tf.train.get_or_create_global_step()
            optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
            train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
            init_op = tf.group(tf.global_variables_initializer(),
                               tf.local_variables_initializer())
            sess.run(init_op)
            for _ in range(100):
                sess.run(train_op)
            w_np = sess.run(w)
            self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #18
Source File: optimization_test.py    From bert-as-language-model with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #19
Source File: optimization_test.py    From bert with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #20
Source File: optimization_test.py    From nlp_research with MIT License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #21
Source File: optimization_test.py    From gobbli with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #22
Source File: optimization_test.py    From bert-multi-gpu with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #23
Source File: optimization_test.py    From BERT-Chinese-Annotation with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #24
Source File: optimization_test.py    From bert_serving with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #25
Source File: optimization_test.py    From DeepCT with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #26
Source File: optimization_test.py    From text_bert_cnn with MIT License 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #27
Source File: optimization_test.py    From models with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.compat.v1.get_variable(
          "w",
          shape=[3],
          initializer=tf.compat.v1.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(input_tensor=tf.square(x - w))
      tvars = tf.compat.v1.trainable_variables()
      grads = tf.gradients(ys=loss, xs=tvars)
      global_step = tf.compat.v1.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.compat.v1.global_variables_initializer(),
                         tf.compat.v1.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #28
Source File: optimization_test.py    From models with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.compat.v1.get_variable(
          "w",
          shape=[3],
          initializer=tf.compat.v1.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(input_tensor=tf.square(x - w))
      tvars = tf.compat.v1.trainable_variables()
      grads = tf.gradients(ys=loss, xs=tvars)
      global_step = tf.compat.v1.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.compat.v1.global_variables_initializer(),
                         tf.compat.v1.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #29
Source File: optimization_test.py    From models with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.compat.v1.get_variable(
          "w",
          shape=[3],
          initializer=tf.compat.v1.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(input_tensor=tf.square(x - w))
      tvars = tf.compat.v1.trainable_variables()
      grads = tf.gradients(ys=loss, xs=tvars)
      global_step = tf.compat.v1.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.compat.v1.global_variables_initializer(),
                         tf.compat.v1.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2) 
Example #30
Source File: optimization_test.py    From BERT with Apache License 2.0 6 votes vote down vote up
def test_adam(self):
    with self.test_session() as sess:
      w = tf.get_variable(
          "w",
          shape=[3],
          initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
      x = tf.constant([0.4, 0.2, -0.5])
      loss = tf.reduce_mean(tf.square(x - w))
      tvars = tf.trainable_variables()
      grads = tf.gradients(loss, tvars)
      global_step = tf.train.get_or_create_global_step()
      optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
      train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      for _ in range(100):
        sess.run(train_op)
      w_np = sess.run(w)
      self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)