Python pandas.core.common._asarray_tuplesafe() Examples
The following are 30
code examples of pandas.core.common._asarray_tuplesafe().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.common
, or try the search function
.
Example #1
Source File: test_interval.py From vnpy_crypto with MIT License | 6 votes |
def test_to_tuples_na(self, tuples, na_tuple): # GH 18756 idx = IntervalIndex.from_tuples(tuples) result = idx.to_tuples(na_tuple=na_tuple) # check the non-NA portion expected_notna = Index(com._asarray_tuplesafe(tuples[:-1])) result_notna = result[:-1] tm.assert_index_equal(result_notna, expected_notna) # check the NA portion result_na = result[-1] if na_tuple: assert isinstance(result_na, tuple) assert len(result_na) == 2 assert all(isna(x) for x in result_na) else: assert isna(result_na)
Example #2
Source File: test_interval.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_to_tuples_na(self, tuples, na_tuple): # GH 18756 idx = IntervalIndex.from_tuples(tuples) result = idx.to_tuples(na_tuple=na_tuple) # check the non-NA portion expected_notna = Index(com._asarray_tuplesafe(tuples[:-1])) result_notna = result[:-1] tm.assert_index_equal(result_notna, expected_notna) # check the NA portion result_na = result[-1] if na_tuple: assert isinstance(result_na, tuple) assert len(result_na) == 2 assert all(isna(x) for x in result_na) else: assert isna(result_na)
Example #3
Source File: algorithms.py From Computable with MIT License | 6 votes |
def unique(values): """ Compute unique values (not necessarily sorted) efficiently from input array of values Parameters ---------- values : array-like Returns ------- uniques """ values = com._asarray_tuplesafe(values) f = lambda htype, caster: _unique_generic(values, htype, caster) return _hashtable_algo(f, values.dtype) # def count(values, uniques=None): # f = lambda htype, caster: _count_generic(values, htype, caster) # if uniques is not None: # raise NotImplementedError # else: # return _hashtable_algo(f, values.dtype)
Example #4
Source File: interval.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def to_tuples(self): return Index(com._asarray_tuplesafe(zip(self.left, self.right)))
Example #5
Source File: interval.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def to_tuples(self): return Index(com._asarray_tuplesafe(zip(self.left, self.right)))
Example #6
Source File: algorithms.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def match(to_match, values, na_sentinel=-1): """ Compute locations of to_match into values Parameters ---------- to_match : array-like values to find positions of values : array-like Unique set of values na_sentinel : int, default -1 Value to mark "not found" Examples -------- Returns ------- match : ndarray of integers """ values = com._asarray_tuplesafe(values) htable, _, values, dtype, ndtype = _get_hashtable_algo(values) to_match, _, _ = _ensure_data(to_match, dtype) table = htable(min(len(to_match), 1000000)) table.map_locations(values) result = table.lookup(to_match) if na_sentinel != -1: # replace but return a numpy array # use a Series because it handles dtype conversions properly from pandas import Series result = Series(result.ravel()).replace(-1, na_sentinel).values.\ reshape(result.shape) return result
Example #7
Source File: _converter.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _convert_1d(values, unit, axis): def try_parse(values): try: return _dt_to_float_ordinal(tools.to_datetime(values)) except Exception: return values if isinstance(values, (datetime, pydt.date)): return _dt_to_float_ordinal(values) elif isinstance(values, np.datetime64): return _dt_to_float_ordinal(lib.Timestamp(values)) elif isinstance(values, pydt.time): return dates.date2num(values) elif (is_integer(values) or is_float(values)): return values elif isinstance(values, compat.string_types): return try_parse(values) elif isinstance(values, (list, tuple, np.ndarray, Index)): if isinstance(values, Index): values = values.values if not isinstance(values, np.ndarray): values = com._asarray_tuplesafe(values) if is_integer_dtype(values) or is_float_dtype(values): return values try: values = tools.to_datetime(values) if isinstance(values, Index): values = _dt_to_float_ordinal(values) else: values = [_dt_to_float_ordinal(x) for x in values] except Exception: values = _dt_to_float_ordinal(values) return values
Example #8
Source File: test_filters.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = lmap(tuple, df[keys].values) tups = com._asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in compat.iteritems(expected): assert (result[k] == v)
Example #9
Source File: test_groupby.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_groupby_sort_multi(self): df = DataFrame({'a': ['foo', 'bar', 'baz'], 'b': [3, 2, 1], 'c': [0, 1, 2], 'd': np.random.randn(3)}) tups = lmap(tuple, df[['a', 'b', 'c']].values) tups = com._asarray_tuplesafe(tups) result = df.groupby(['a', 'b', 'c'], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = lmap(tuple, df[['c', 'a', 'b']].values) tups = com._asarray_tuplesafe(tups) result = df.groupby(['c', 'a', 'b'], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = lmap(tuple, df[['b', 'c', 'a']].values) tups = com._asarray_tuplesafe(tups) result = df.groupby(['b', 'c', 'a'], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame({'a': [0, 1, 2, 0, 1, 2], 'b': [0, 0, 0, 1, 1, 1], 'd': np.random.randn(6)}) grouped = df.groupby(['a', 'b'])['d'] result = grouped.sum() _check_groupby(df, result, ['a', 'b'], 'd')
Example #10
Source File: test_groupby.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = lmap(tuple, df[keys].values) tups = com._asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in compat.iteritems(expected): assert (result[k] == v)
Example #11
Source File: test_sorting.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame({'A': A, 'B': B, 'C': A, 'D': B, 'E': A, 'F': B, 'G': A, 'H': B, 'values': np.random.randn(2500)}) lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A']) left = lg.sum()['values'] right = rg.sum()['values'] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ]].values)) tups = com._asarray_tuplesafe(tups) expected = df.groupby(tups).sum()['values'] for k, v in compat.iteritems(expected): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right)
Example #12
Source File: numeric.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _convert_arr_indexer(self, keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. keyarr = _asarray_tuplesafe(keyarr) if is_integer_dtype(keyarr): return _asarray_tuplesafe(keyarr, dtype=np.uint64) return keyarr
Example #13
Source File: window.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _prep_window(self, **kwargs): """ provide validation for our window type, return the window we have already been validated """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return _asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = {'kaiser': ['beta'], 'gaussian': ['std'], 'general_gaussian': ['power', 'width'], 'slepian': ['width']} if win_type in arg_map: return tuple([win_type] + _pop_args(win_type, arg_map[win_type], kwargs)) return win_type def _pop_args(win_type, arg_names, kwargs): msg = '%s window requires %%s' % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float)
Example #14
Source File: algorithms.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def match(to_match, values, na_sentinel=-1): """ Compute locations of to_match into values Parameters ---------- to_match : array-like values to find positions of values : array-like Unique set of values na_sentinel : int, default -1 Value to mark "not found" Examples -------- Returns ------- match : ndarray of integers """ values = com._asarray_tuplesafe(values) htable, _, values, dtype, ndtype = _get_hashtable_algo(values) to_match, _, _ = _ensure_data(to_match, dtype) table = htable(min(len(to_match), 1000000)) table.map_locations(values) result = table.lookup(to_match) if na_sentinel != -1: # replace but return a numpy array # use a Series because it handles dtype conversions properly from pandas import Series result = Series(result.ravel()).replace(-1, na_sentinel).values.\ reshape(result.shape) return result
Example #15
Source File: _converter.py From twitter-stock-recommendation with MIT License | 5 votes |
def _convert_1d(values, unit, axis): def try_parse(values): try: return _dt_to_float_ordinal(tools.to_datetime(values)) except Exception: return values if isinstance(values, (datetime, pydt.date)): return _dt_to_float_ordinal(values) elif isinstance(values, np.datetime64): return _dt_to_float_ordinal(tslib.Timestamp(values)) elif isinstance(values, pydt.time): return dates.date2num(values) elif (is_integer(values) or is_float(values)): return values elif isinstance(values, compat.string_types): return try_parse(values) elif isinstance(values, (list, tuple, np.ndarray, Index)): if isinstance(values, Index): values = values.values if not isinstance(values, np.ndarray): values = com._asarray_tuplesafe(values) if is_integer_dtype(values) or is_float_dtype(values): return values try: values = tools.to_datetime(values) if isinstance(values, Index): values = _dt_to_float_ordinal(values) else: values = [_dt_to_float_ordinal(x) for x in values] except Exception: values = _dt_to_float_ordinal(values) return values
Example #16
Source File: test_construction.py From twitter-stock-recommendation with MIT License | 5 votes |
def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_tuples """ if len(breaks) == 0: return {'data': breaks} tuples = lzip(breaks[:-1], breaks[1:]) if isinstance(breaks, (list, tuple)): return {'data': tuples} elif is_categorical_dtype(breaks): return {'data': breaks._constructor(tuples)} return {'data': com._asarray_tuplesafe(tuples)}
Example #17
Source File: test_interval.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_to_tuples(self, tuples): # GH 18756 idx = IntervalIndex.from_tuples(tuples) result = idx.to_tuples() expected = Index(com._asarray_tuplesafe(tuples)) tm.assert_index_equal(result, expected)
Example #18
Source File: test_algos.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array)
Example #19
Source File: test_sorting.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame({'A': A, 'B': B, 'C': A, 'D': B, 'E': A, 'F': B, 'G': A, 'H': B, 'values': np.random.randn(2500)}) lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A']) left = lg.sum()['values'] right = rg.sum()['values'] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ]].values)) tups = com._asarray_tuplesafe(tups) expected = df.groupby(tups).sum()['values'] for k, v in compat.iteritems(expected): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right)
Example #20
Source File: algorithms.py From vnpy_crypto with MIT License | 5 votes |
def match(to_match, values, na_sentinel=-1): """ Compute locations of to_match into values Parameters ---------- to_match : array-like values to find positions of values : array-like Unique set of values na_sentinel : int, default -1 Value to mark "not found" Examples -------- Returns ------- match : ndarray of integers """ values = com._asarray_tuplesafe(values) htable, _, values, dtype, ndtype = _get_hashtable_algo(values) to_match, _, _ = _ensure_data(to_match, dtype) table = htable(min(len(to_match), 1000000)) table.map_locations(values) result = table.lookup(to_match) if na_sentinel != -1: # replace but return a numpy array # use a Series because it handles dtype conversions properly from pandas import Series result = Series(result.ravel()).replace(-1, na_sentinel).values.\ reshape(result.shape) return result
Example #21
Source File: test_construction.py From vnpy_crypto with MIT License | 5 votes |
def get_kwargs_from_breaks(self, breaks, closed='right'): """ converts intervals in breaks format to a dictionary of kwargs to specific to the format expected by IntervalIndex.from_tuples """ if len(breaks) == 0: return {'data': breaks} tuples = lzip(breaks[:-1], breaks[1:]) if isinstance(breaks, (list, tuple)): return {'data': tuples} elif is_categorical_dtype(breaks): return {'data': breaks._constructor(tuples)} return {'data': com._asarray_tuplesafe(tuples)}
Example #22
Source File: test_interval.py From vnpy_crypto with MIT License | 5 votes |
def test_to_tuples(self, tuples): # GH 18756 idx = IntervalIndex.from_tuples(tuples) result = idx.to_tuples() expected = Index(com._asarray_tuplesafe(tuples)) tm.assert_index_equal(result, expected)
Example #23
Source File: test_algos.py From vnpy_crypto with MIT License | 5 votes |
def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array)
Example #24
Source File: test_sorting.py From vnpy_crypto with MIT License | 5 votes |
def test_int64_overflow(self): B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500))) A = np.arange(2500) df = DataFrame({'A': A, 'B': B, 'C': A, 'D': B, 'E': A, 'F': B, 'G': A, 'H': B, 'values': np.random.randn(2500)}) lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']) rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A']) left = lg.sum()['values'] right = rg.sum()['values'] exp_index, _ = left.index.sortlevel() tm.assert_index_equal(left.index, exp_index) exp_index, _ = right.index.sortlevel(0) tm.assert_index_equal(right.index, exp_index) tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ]].values)) tups = com._asarray_tuplesafe(tups) expected = df.groupby(tups).sum()['values'] for k, v in compat.iteritems(expected): assert left[k] == right[k[::-1]] assert left[k] == v assert len(left) == len(right)
Example #25
Source File: window.py From vnpy_crypto with MIT License | 5 votes |
def _prep_window(self, **kwargs): """ provide validation for our window type, return the window we have already been validated """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com._asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = {'kaiser': ['beta'], 'gaussian': ['std'], 'general_gaussian': ['power', 'width'], 'slepian': ['width']} if win_type in arg_map: return tuple([win_type] + _pop_args(win_type, arg_map[win_type], kwargs)) return win_type def _pop_args(win_type, arg_names, kwargs): msg = '%s window requires %%s' % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float)
Example #26
Source File: category.py From vnpy_crypto with MIT License | 5 votes |
def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) if self.categories._defer_to_indexing: return keyarr return self._shallow_copy(keyarr)
Example #27
Source File: base.py From vnpy_crypto with MIT License | 5 votes |
def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) return keyarr
Example #28
Source File: numeric.py From vnpy_crypto with MIT License | 5 votes |
def _convert_arr_indexer(self, keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. keyarr = com._asarray_tuplesafe(keyarr) if is_integer_dtype(keyarr): return com._asarray_tuplesafe(keyarr, dtype=np.uint64) return keyarr
Example #29
Source File: numeric.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _convert_arr_indexer(self, keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. keyarr = _asarray_tuplesafe(keyarr) if is_integer_dtype(keyarr): return _asarray_tuplesafe(keyarr, dtype=np.uint64) return keyarr
Example #30
Source File: series.py From vnpy_crypto with MIT License | 5 votes |
def _set_labels(self, key, value): if isinstance(key, Index): key = key.values else: key = com._asarray_tuplesafe(key) indexer = self.index.get_indexer(key) mask = indexer == -1 if mask.any(): raise ValueError('%s not contained in the index' % str(key[mask])) self._set_values(indexer, value)