Python data.get_dataset() Examples
The following are 7
code examples of data.get_dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data
, or try the search function
.
Example #1
Source File: test_data.py From stylegan_reimplementation with Apache License 2.0 | 6 votes |
def test_get_dataset_raw(self): with self.test_session(): test_image1 = tf.constant(np.arange(4 * 4 * 3), shape=[4, 4, 3], dtype=tf.uint8) encoded = tf.image.encode_png(test_image1) image = encoded.eval() print(os.getcwd()) with open(os.path.join("test_files", "test1.png"), "wb") as f: f.write(image) test_image2 = tf.constant(np.flip(np.arange(4 * 4 * 3), axis=0), shape=[4, 4, 3], dtype=tf.uint8) encoded = tf.image.encode_png(test_image2) image = encoded.eval() with open(os.path.join("test_files", "test2.png"), "wb") as f: f.write(image) files = glob.glob(os.path.join("test_files", "test*.png")) dataset = get_dataset(files) it = dataset.make_one_shot_iterator() self.assertAllClose(it.get_next(), test_image1) self.assertAllClose(it.get_next(), test_image2)
Example #2
Source File: utils.py From acai with Apache License 2.0 | 5 votes |
def load_ae(path, target_dataset, batch, all_aes, return_dataset=False): r_param = re.compile('(?P<name>[a-zA-Z][a-z_]*)(?P<value>(True)|(False)|(\d+(\.\d+)?(,\d+)*))') folders = [x for x in os.path.abspath(path).split('/') if x] dataset = folders[-2] if dataset != target_dataset: tf.logging.log(tf.logging.WARN, 'Mismatched datasets between classfier and AE (%s, %s)', target_dataset, dataset) class_name, argpairs = folders[-1].split('_', 1) params = {} for x in r_param.findall(argpairs): name, value = x[:2] if ',' in value: pass elif value in ('True', 'False'): value = dict(True=True, False=False)[value] elif '.' in value: value = float(value) else: value = int(value) params[name] = value class_ = all_aes[class_name] dataset = data.get_dataset(dataset, dict(batch_size=batch)) ae = class_(dataset, '/' + os.path.join(*(folders[:-2])), **params) if return_dataset: return ae, dataset else: return ae, folders[-1]
Example #3
Source File: test_data.py From stylegan_reimplementation with Apache License 2.0 | 5 votes |
def test_get_dataset_tfrecords(self): with self.test_session(): test_image1 = tf.constant(np.arange(4 * 4 * 3), shape=[4, 4, 3], dtype=tf.uint8) test_image2 = tf.constant(np.flip(np.arange(4 * 4 * 3), axis=0), shape=[4, 4, 3], dtype=tf.uint8) writer = tf.python_io.TFRecordWriter(os.path.join("test_files", "test.tfrecords")) testimage1_bytes_list = tf.train.BytesList(value=[test_image1.eval().tobytes()]) example1 = tf.train.Example( features=tf.train.Features( feature={'data': tf.train.Feature(bytes_list=testimage1_bytes_list), 'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=[4, 4, 3]))} ) ) testimage2_bytes_list = tf.train.BytesList(value=[test_image2.eval().tobytes()]) example2 = tf.train.Example( features=tf.train.Features( feature={'data': tf.train.Feature(bytes_list=testimage2_bytes_list), 'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=[4, 4, 3]))} ) ) writer.write(example1.SerializeToString()) writer.write(example2.SerializeToString()) writer.close() files = glob.glob(os.path.join("test_files", "*.tfrecords")) dataset = get_dataset(files) it = dataset.make_one_shot_iterator() self.assertAllClose(it.get_next(), test_image1) self.assertAllClose(it.get_next(), test_image2)
Example #4
Source File: test_data.py From stylegan_reimplementation with Apache License 2.0 | 5 votes |
def test_preprocess_dataset_batch2_float_raw(self): with self.test_session(): test_image1 = tf.constant(np.arange(4 * 4 * 3), shape=[4, 4, 3], dtype=tf.uint8) test_image2 = tf.constant(np.flip(np.arange(4 * 4 * 3), axis=0), shape=[4, 4, 3], dtype=tf.uint8) writer = tf.python_io.TFRecordWriter(os.path.join("test_files", "test.tfrecords")) testimage1_bytes_list = tf.train.BytesList(value=[test_image1.eval().tobytes()]) example1 = tf.train.Example( features=tf.train.Features( feature={'data': tf.train.Feature(bytes_list=testimage1_bytes_list), 'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=[4, 4, 3]))} ) ) testimage2_bytes_list = tf.train.BytesList(value=[test_image2.eval().tobytes()]) example2 = tf.train.Example( features=tf.train.Features( feature={'data': tf.train.Feature(bytes_list=testimage2_bytes_list), 'shape': tf.train.Feature(int64_list=tf.train.Int64List(value=[4, 4, 3]))} ) ) writer.write(example1.SerializeToString()) writer.write(example2.SerializeToString()) writer.close() files = glob.glob(os.path.join("test_files", "*.tfrecords")) dataset = get_dataset(files) dataset = preprocess_dataset(dataset, size=[64, 64], batch_size=2, float_pixels=True) it = dataset.make_one_shot_iterator() data = it.get_next().eval() self.assertEqual(data.shape, (2, 64, 64, 3)) self.assertAllClose(max(data.flatten()), max(test_image1.eval().flatten()) / 127.5 - 1.) self.assertAllClose(min(data.flatten()), min(test_image1.eval().flatten()) / 127.5 - 1.)
Example #5
Source File: test_data.py From stylegan_reimplementation with Apache License 2.0 | 5 votes |
def test_preprocess_dataset_batch2_float_tfrecord(self): with self.test_session(): test_image1 = tf.constant(np.arange(4 * 4 * 3) * 5, shape=[4, 4, 3], dtype=tf.uint8) encoded = tf.image.encode_png(test_image1) image1 = encoded.eval() with open(os.path.join("test_files", "test1.png"), "wb") as f: f.write(image1) test_image2 = tf.constant(np.flip(np.arange(4 * 4 * 3) * 5, axis=0), shape=[4, 4, 3], dtype=tf.uint8) encoded = tf.image.encode_png(test_image2) image2 = encoded.eval() with open(os.path.join("test_files", "test2.png"), "wb") as f: f.write(image2) files = glob.glob(os.path.join("test_files", "test*.png")) dataset = get_dataset(files) dataset = preprocess_dataset(dataset, size=[64, 64], batch_size=2, float_pixels=True) it = dataset.make_one_shot_iterator() data = it.get_next().eval() self.assertEqual(data.shape, (2, 64, 64, 3)) self.assertAllClose(max(data.flatten()), max(test_image1.eval().flatten()) / 127.5 - 1.) self.assertAllClose(min(data.flatten()), min(test_image1.eval().flatten()) / 127.5 - 1.)
Example #6
Source File: train.py From stylegan_reimplementation with Apache License 2.0 | 5 votes |
def build_data_iterator(hps, files, current_res_h, current_res_w, batch_size=None, label_list=None, num_shards=None, shard_index=None): random.shuffle(files) dataset = get_dataset(files, current_res_h, current_res_w, hps.epochs_per_res, batch_size, label_list=label_list, num_shards=None, shard_index=None) it = dataset.make_one_shot_iterator() return it
Example #7
Source File: parse.py From provable-robustness-max-linear-regions with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_dt(filename, dataset): dt = pd.read_csv(filename) _, _, _, y_test = data.get_dataset(dataset) pd_y_test = pd.DataFrame({'TrueIndex': y_test.argmax(1)}) return preprocess_summary_file(dt, pd_y_test)