Python data.VOCDetection() Examples
The following are 9
code examples of data.VOCDetection().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data
, or try the search function
.
Example #1
Source File: test.py From CSD-SSD with MIT License | 6 votes |
def test_voc(): # load net num_classes = len(VOC_CLASSES) + 1 # +1 background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
Example #2
Source File: test.py From SSD_resnet_pytorch with MIT License | 6 votes |
def test_voc(): # load net num_classes = len(VOC_CLASSES) + 1 # +1 background net = build_ssd('test',args.model, 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
Example #3
Source File: test.py From repulsion_loss_ssd with MIT License | 6 votes |
def test_voc(): # load net num_classes = len(VOC_CLASSES) + 1 # +1 background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
Example #4
Source File: test.py From ssd.pytorch with MIT License | 6 votes |
def test_voc(): # load net num_classes = len(VOC_CLASSES) + 1 # +1 background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, testset, BaseTransform(net.size, (104, 117, 123)), thresh=args.visual_threshold)
Example #5
Source File: core.py From M2Det with MIT License | 5 votes |
def get_dataloader(cfg, dataset, setname='train_sets'): _preproc = preproc(cfg.model.input_size, cfg.model.rgb_means, cfg.model.p) Dataloader_function = {'VOC': VOCDetection, 'COCO':COCODetection} _Dataloader_function = Dataloader_function[dataset] if setname == 'train_sets': dataset = _Dataloader_function(cfg.COCOroot if dataset == 'COCO' else cfg.VOCroot, getattr(cfg.dataset, dataset)[setname], _preproc) else: dataset = _Dataloader_function(cfg.COCOroot if dataset == 'COCO' else cfg.VOCroot, getattr(cfg.dataset, dataset)[setname], None) return dataset
Example #6
Source File: train.py From pytorch-ssd with MIT License | 5 votes |
def DatasetSync(dataset='VOC',split='training'): if dataset=='VOC': #DataRoot=os.path.join(args.data_root,'VOCdevkit') DataRoot=args.data_root dataset = VOCDetection(DataRoot, train_sets, SSDAugmentation( args.dim, means), AnnotationTransform()) elif dataset=='kitti': DataRoot=os.path.join(args.data_root,'kitti') dataset = KittiLoader(DataRoot, split=split,img_size=(1000,300), transforms=SSDAugmentation((1000,300),means), target_transform=AnnotationTransform_kitti()) return dataset
Example #7
Source File: train.py From hand-detection.PyTorch with MIT License | 4 votes |
def train(): net.train() epoch = 0 + args.resume_epoch print('Loading Dataset...') dataset = VOCDetection(args.training_dataset, preproc(img_dim, rgb_means), AnnotationTransform()) epoch_size = math.ceil(len(dataset) / args.batch_size) max_iter = args.max_epoch * epoch_size stepvalues = (200 * epoch_size, 250 * epoch_size) step_index = 0 if args.resume_epoch > 0: start_iter = args.resume_epoch * epoch_size else: start_iter = 0 for iteration in range(start_iter, max_iter): if iteration % epoch_size == 0: # create batch iterator batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=detection_collate)) if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > 200): torch.save(net.state_dict(), args.save_folder + 'HandBoxes_epoch_' + repr(epoch) + '.pth') epoch += 1 load_t0 = time.time() if iteration in stepvalues: step_index += 1 lr = adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size) # load train data images, targets = next(batch_iterator) if gpu_train: images = Variable(images.cuda()) targets = [Variable(anno.cuda()) for anno in targets] else: images = Variable(images) targets = [Variable(anno) for anno in targets] # forward out = net(images) # backprop optimizer.zero_grad() loss_l, loss_c = criterion(out, priors, targets) loss = cfg['loc_weight'] * loss_l + loss_c loss.backward() optimizer.step() load_t1 = time.time() print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size) + '|| Totel iter ' + repr(iteration) + ' || L: %.4f C: %.4f||' % (cfg['loc_weight']*loss_l.item(), loss_c.item()) + 'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr)) torch.save(net.state_dict(), args.save_folder + 'Final_HandBoxes.pth')
Example #8
Source File: train_s3fd.py From S3FD.PyTorch with Apache License 2.0 | 4 votes |
def train(): net.train() epoch = 0 + args.resume_epoch print('Loading Dataset...') dataset = VOCDetection(args.training_dataset, preproc_s3fd(img_dim, rgb_means, cfg['max_expand_ratio']), AnnotationTransform()) epoch_size = math.ceil(len(dataset) / args.batch_size) max_iter = args.max_epoch * epoch_size stepvalues = (200 * epoch_size, 250 * epoch_size) step_index = 0 if args.resume_epoch > 0: start_iter = args.resume_epoch * epoch_size else: start_iter = 0 for iteration in range(start_iter, max_iter): if iteration % epoch_size == 0: # create batch iterator batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=detection_collate, pin_memory=True)) if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > 200): torch.save(net.state_dict(), args.save_folder + 'S3FD_epoch_' + repr(epoch) + '.pth') epoch += 1 load_t0 = time.time() if iteration in stepvalues: step_index += 1 lr = adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size) # load train data images, targets = next(batch_iterator) if args.cuda: images = Variable(images.cuda()) targets = [Variable(anno.cuda()) for anno in targets] else: images = Variable(images) targets = [Variable(anno) for anno in targets] # forward out = net(images) # backprop optimizer.zero_grad() loss_l, loss_c = criterion(out, priors, targets) loss = loss_l + cfg['conf_weight'] * loss_c loss.backward() optimizer.step() load_t1 = time.time() print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size) + '|| Totel iter ' + repr(iteration) + ' || L: %.4f C: %.4f||' % (loss_l.item(), cfg['conf_weight'] * loss_c.item()) + 'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr)) if writer is not None: writer.add_scalar('train/loss_l', loss_l.item(), iteration) writer.add_scalar('train/loss_c', cfg['conf_weight'] * loss_c.item(), iteration) writer.add_scalar('train/lr', lr, iteration) torch.save(net.state_dict(), args.save_folder + 'Final_S3FD.pth')
Example #9
Source File: train.py From FaceBoxes.PyTorch with MIT License | 4 votes |
def train(): net.train() epoch = 0 + args.resume_epoch print('Loading Dataset...') dataset = VOCDetection(training_dataset, preproc(img_dim, rgb_mean), AnnotationTransform()) epoch_size = math.ceil(len(dataset) / batch_size) max_iter = max_epoch * epoch_size stepvalues = (200 * epoch_size, 250 * epoch_size) step_index = 0 if args.resume_epoch > 0: start_iter = args.resume_epoch * epoch_size else: start_iter = 0 for iteration in range(start_iter, max_iter): if iteration % epoch_size == 0: # create batch iterator batch_iterator = iter(data.DataLoader(dataset, batch_size, shuffle=True, num_workers=num_workers, collate_fn=detection_collate)) if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 == 0 and epoch > 200): torch.save(net.state_dict(), save_folder + 'FaceBoxes_epoch_' + str(epoch) + '.pth') epoch += 1 load_t0 = time.time() if iteration in stepvalues: step_index += 1 lr = adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size) # load train data images, targets = next(batch_iterator) images = images.to(device) targets = [anno.to(device) for anno in targets] # forward out = net(images) # backprop optimizer.zero_grad() loss_l, loss_c = criterion(out, priors, targets) loss = cfg['loc_weight'] * loss_l + loss_c loss.backward() optimizer.step() load_t1 = time.time() batch_time = load_t1 - load_t0 eta = int(batch_time * (max_iter - iteration)) print('Epoch:{}/{} || Epochiter: {}/{} || Iter: {}/{} || L: {:.4f} C: {:.4f} || LR: {:.8f} || Batchtime: {:.4f} s || ETA: {}'.format(epoch, max_epoch, (iteration % epoch_size) + 1, epoch_size, iteration + 1, max_iter, loss_l.item(), loss_c.item(), lr, batch_time, str(datetime.timedelta(seconds=eta)))) torch.save(net.state_dict(), save_folder + 'Final_FaceBoxes.pth')