Python data.SENTENCE_END Examples
The following are 30
code examples of data.SENTENCE_END().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data
, or try the search function
.
Example #1
Source File: seq2seq_attention_decode.py From HumanRecognition with MIT License | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #2
Source File: seq2seq_attention_decode.py From hands-detection with MIT License | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #3
Source File: seq2seq_attention_decode.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #4
Source File: seq2seq_attention_decode.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #5
Source File: seq2seq_attention_decode.py From Action_Recognition_Zoo with MIT License | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #6
Source File: seq2seq_attention_decode.py From object_detection_with_tensorflow with MIT License | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #7
Source File: vocab_batcher.py From text2text with Apache License 2.0 | 6 votes |
def _AddSentenceBoundary(self, text): """Pads text with start end end of sentence token iff needed. Args: text: text to be padded. Returns: A text with start and end tokens. """ if not text.startswith(data.SENTENCE_START): text = data.SENTENCE_START + ' ' + text if not text.endswith(data.SENTENCE_END): text = text + ' ' + data.SENTENCE_END return text
Example #8
Source File: copynet_batcher.py From text2text with Apache License 2.0 | 6 votes |
def _AddSentenceBoundary(self, text): """Pads text with start end end of sentence token iff needed. Args: text: text to be padded. Returns: A text with start and end tokens. """ if not text.startswith(data.SENTENCE_START): text = data.SENTENCE_START + ' ' + text if not text.endswith(data.SENTENCE_END): text = text + ' ' + data.SENTENCE_END return text
Example #9
Source File: seq2seq_attention_decode.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #10
Source File: seq2seq_attention_decode.py From Gun-Detector with Apache License 2.0 | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #11
Source File: seq2seq_attention_decode.py From models with Apache License 2.0 | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #12
Source File: seq2seq_attention_decode.py From yolo_v2 with Apache License 2.0 | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #13
Source File: seq2seq_attention_decode.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #14
Source File: seq2seq_attention_decode.py From DOTA_models with Apache License 2.0 | 6 votes |
def _DecodeBatch(self, article, abstract, output_ids): """Convert id to words and writing results. Args: article: The original article string. abstract: The human (correct) abstract string. output_ids: The abstract word ids output by machine. """ decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab)) end_p = decoded_output.find(data.SENTENCE_END, 0) if end_p != -1: decoded_output = decoded_output[:end_p] tf.logging.info('article: %s', article) tf.logging.info('abstract: %s', abstract) tf.logging.info('decoded: %s', decoded_output) self._decode_io.Write(abstract, decoded_output.strip())
Example #15
Source File: seq2seq_attention_decode.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #16
Source File: seq2seq_attention_decode.py From hands-detection with MIT License | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #17
Source File: seq2seq_attention_decode.py From HumanRecognition with MIT License | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #18
Source File: seq2seq_attention_decode.py From models with Apache License 2.0 | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #19
Source File: seq2seq_attention_decode.py From object_detection_with_tensorflow with MIT License | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #20
Source File: seq2seq_attention_decode.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #21
Source File: seq2seq_attention_decode.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #22
Source File: seq2seq_attention_decode.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #23
Source File: seq2seq_attention_decode.py From yolo_v2 with Apache License 2.0 | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #24
Source File: seq2seq_attention_decode.py From Action_Recognition_Zoo with MIT License | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #25
Source File: seq2seq_attention_decode.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #26
Source File: seq2seq_attention_decode.py From DOTA_models with Apache License 2.0 | 5 votes |
def _Decode(self, saver, sess): """Restore a checkpoint and decode it. Args: saver: Tensorflow checkpoint saver. sess: Tensorflow session. Returns: If success, returns true, otherwise, false. """ ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) if not (ckpt_state and ckpt_state.model_checkpoint_path): tf.logging.info('No model to decode yet at %s', FLAGS.log_root) return False tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path) ckpt_path = os.path.join( FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path)) tf.logging.info('renamed checkpoint path %s', ckpt_path) saver.restore(sess, ckpt_path) self._decode_io.ResetFiles() for _ in xrange(FLAGS.decode_batches_per_ckpt): (article_batch, _, _, article_lens, _, _, origin_articles, origin_abstracts) = self._batch_reader.NextBatch() for i in xrange(self._hps.batch_size): bs = beam_search.BeamSearch( self._model, self._hps.batch_size, self._vocab.WordToId(data.SENTENCE_START), self._vocab.WordToId(data.SENTENCE_END), self._hps.dec_timesteps) article_batch_cp = article_batch.copy() article_batch_cp[:] = article_batch[i:i+1] article_lens_cp = article_lens.copy() article_lens_cp[:] = article_lens[i:i+1] best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0] decode_output = [int(t) for t in best_beam.tokens[1:]] self._DecodeBatch( origin_articles[i], origin_abstracts[i], decode_output) return True
Example #27
Source File: seq2seq_attention.py From HumanRecognition with MIT License | 4 votes |
def main(unused_argv): vocab = data.Vocab(FLAGS.vocab_path, 1000000) # Check for presence of required special tokens. assert vocab.CheckVocab(data.PAD_TOKEN) > 0 assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0 assert vocab.CheckVocab(data.SENTENCE_START) > 0 assert vocab.CheckVocab(data.SENTENCE_END) > 0 batch_size = 4 if FLAGS.mode == 'decode': batch_size = FLAGS.beam_size hps = seq2seq_attention_model.HParams( mode=FLAGS.mode, # train, eval, decode min_lr=0.01, # min learning rate. lr=0.15, # learning rate batch_size=batch_size, enc_layers=4, enc_timesteps=120, dec_timesteps=30, min_input_len=2, # discard articles/summaries < than this num_hidden=256, # for rnn cell emb_dim=128, # If 0, don't use embedding max_grad_norm=2, num_softmax_samples=4096) # If 0, no sampled softmax. batcher = batch_reader.Batcher( FLAGS.data_path, vocab, hps, FLAGS.article_key, FLAGS.abstract_key, FLAGS.max_article_sentences, FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing, truncate_input=FLAGS.truncate_input) tf.set_random_seed(FLAGS.random_seed) if hps.mode == 'train': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Train(model, batcher) elif hps.mode == 'eval': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Eval(model, batcher, vocab=vocab) elif hps.mode == 'decode': decode_mdl_hps = hps # Only need to restore the 1st step and reuse it since # we keep and feed in state for each step's output. decode_mdl_hps = hps._replace(dec_timesteps=1) model = seq2seq_attention_model.Seq2SeqAttentionModel( decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus) decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab) decoder.DecodeLoop()
Example #28
Source File: seq2seq_attention.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def main(unused_argv): vocab = data.Vocab(FLAGS.vocab_path, 1000000) # Check for presence of required special tokens. assert vocab.CheckVocab(data.PAD_TOKEN) > 0 assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0 assert vocab.CheckVocab(data.SENTENCE_START) > 0 assert vocab.CheckVocab(data.SENTENCE_END) > 0 batch_size = 4 if FLAGS.mode == 'decode': batch_size = FLAGS.beam_size hps = seq2seq_attention_model.HParams( mode=FLAGS.mode, # train, eval, decode min_lr=0.01, # min learning rate. lr=0.15, # learning rate batch_size=batch_size, enc_layers=4, enc_timesteps=120, dec_timesteps=30, min_input_len=2, # discard articles/summaries < than this num_hidden=256, # for rnn cell emb_dim=128, # If 0, don't use embedding max_grad_norm=2, num_softmax_samples=4096) # If 0, no sampled softmax. batcher = batch_reader.Batcher( FLAGS.data_path, vocab, hps, FLAGS.article_key, FLAGS.abstract_key, FLAGS.max_article_sentences, FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing, truncate_input=FLAGS.truncate_input) tf.set_random_seed(FLAGS.random_seed) if hps.mode == 'train': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Train(model, batcher) elif hps.mode == 'eval': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Eval(model, batcher, vocab=vocab) elif hps.mode == 'decode': decode_mdl_hps = hps # Only need to restore the 1st step and reuse it since # we keep and feed in state for each step's output. decode_mdl_hps = hps._replace(dec_timesteps=1) model = seq2seq_attention_model.Seq2SeqAttentionModel( decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus) decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab) decoder.DecodeLoop()
Example #29
Source File: seq2seq_attention.py From DOTA_models with Apache License 2.0 | 4 votes |
def main(unused_argv): vocab = data.Vocab(FLAGS.vocab_path, 1000000) # Check for presence of required special tokens. assert vocab.CheckVocab(data.PAD_TOKEN) > 0 assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0 assert vocab.CheckVocab(data.SENTENCE_START) > 0 assert vocab.CheckVocab(data.SENTENCE_END) > 0 batch_size = 4 if FLAGS.mode == 'decode': batch_size = FLAGS.beam_size hps = seq2seq_attention_model.HParams( mode=FLAGS.mode, # train, eval, decode min_lr=0.01, # min learning rate. lr=0.15, # learning rate batch_size=batch_size, enc_layers=4, enc_timesteps=120, dec_timesteps=30, min_input_len=2, # discard articles/summaries < than this num_hidden=256, # for rnn cell emb_dim=128, # If 0, don't use embedding max_grad_norm=2, num_softmax_samples=4096) # If 0, no sampled softmax. batcher = batch_reader.Batcher( FLAGS.data_path, vocab, hps, FLAGS.article_key, FLAGS.abstract_key, FLAGS.max_article_sentences, FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing, truncate_input=FLAGS.truncate_input) tf.set_random_seed(FLAGS.random_seed) if hps.mode == 'train': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Train(model, batcher) elif hps.mode == 'eval': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Eval(model, batcher, vocab=vocab) elif hps.mode == 'decode': decode_mdl_hps = hps # Only need to restore the 1st step and reuse it since # we keep and feed in state for each step's output. decode_mdl_hps = hps._replace(dec_timesteps=1) model = seq2seq_attention_model.Seq2SeqAttentionModel( decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus) decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab) decoder.DecodeLoop()
Example #30
Source File: seq2seq_attention.py From models with Apache License 2.0 | 4 votes |
def main(unused_argv): vocab = data.Vocab(FLAGS.vocab_path, 1000000) # Check for presence of required special tokens. assert vocab.CheckVocab(data.PAD_TOKEN) > 0 assert vocab.CheckVocab(data.UNKNOWN_TOKEN) >= 0 assert vocab.CheckVocab(data.SENTENCE_START) > 0 assert vocab.CheckVocab(data.SENTENCE_END) > 0 batch_size = 4 if FLAGS.mode == 'decode': batch_size = FLAGS.beam_size hps = seq2seq_attention_model.HParams( mode=FLAGS.mode, # train, eval, decode min_lr=0.01, # min learning rate. lr=0.15, # learning rate batch_size=batch_size, enc_layers=4, enc_timesteps=120, dec_timesteps=30, min_input_len=2, # discard articles/summaries < than this num_hidden=256, # for rnn cell emb_dim=128, # If 0, don't use embedding max_grad_norm=2, num_softmax_samples=4096) # If 0, no sampled softmax. batcher = batch_reader.Batcher( FLAGS.data_path, vocab, hps, FLAGS.article_key, FLAGS.abstract_key, FLAGS.max_article_sentences, FLAGS.max_abstract_sentences, bucketing=FLAGS.use_bucketing, truncate_input=FLAGS.truncate_input) tf.set_random_seed(FLAGS.random_seed) if hps.mode == 'train': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Train(model, batcher) elif hps.mode == 'eval': model = seq2seq_attention_model.Seq2SeqAttentionModel( hps, vocab, num_gpus=FLAGS.num_gpus) _Eval(model, batcher, vocab=vocab) elif hps.mode == 'decode': decode_mdl_hps = hps # Only need to restore the 1st step and reuse it since # we keep and feed in state for each step's output. decode_mdl_hps = hps._replace(dec_timesteps=1) model = seq2seq_attention_model.Seq2SeqAttentionModel( decode_mdl_hps, vocab, num_gpus=FLAGS.num_gpus) decoder = seq2seq_attention_decode.BSDecoder(model, batcher, hps, vocab) decoder.DecodeLoop()