Python data.coco() Examples
The following are 18
code examples of data.coco().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data
, or try the search function
.
Example #1
Source File: ssd.py From repulsion_loss_ssd with MIT License | 6 votes |
def __init__(self, phase, size, base, extras, head, num_classes): super(SSD, self).__init__() self.phase = phase self.num_classes = num_classes self.cfg = (coco, voc)[num_classes == 21] self.priorbox = PriorBox(self.cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) self.size = size # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
Example #2
Source File: refinedet_multibox_loss.py From multitrident with Apache License 2.0 | 6 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True, theta=0.01, use_ARM=False): super(RefineDetMultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance'] self.theta = theta self.use_ARM = use_ARM
Example #3
Source File: regionpooling_multibox_loss.py From multitrident with Apache License 2.0 | 6 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True, theta=0.01, use_ARM=False): super(RPRefineDetMultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance'] self.theta = theta self.use_ARM = use_ARM
Example #4
Source File: softrefinedet_multibox_loss.py From multitrident with Apache License 2.0 | 6 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True, theta=0.01, use_ARM=False): super(softRefineDetMultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance'] self.theta = theta self.use_ARM = use_ARM
Example #5
Source File: ssd.py From ssd.pytorch with MIT License | 6 votes |
def __init__(self, phase, size, base, extras, head, num_classes): super(SSD, self).__init__() self.phase = phase self.num_classes = num_classes self.cfg = (coco, voc)[num_classes == 21] self.priorbox = PriorBox(self.cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) self.size = size # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
Example #6
Source File: ssd.py From CSD-SSD with MIT License | 6 votes |
def __init__(self, phase, size, base, extras, head, num_classes): super(SSD, self).__init__() self.phase = phase self.num_classes = num_classes if(size==300): self.cfg = (coco, voc300)[num_classes == 21] else: self.cfg = (coco, voc512)[num_classes == 21] self.priorbox = PriorBox(self.cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) self.size = size # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
Example #7
Source File: ssd.py From SSD_resnet_pytorch with MIT License | 6 votes |
def __init__(self, phase,model, size, base, extras, head, num_classes): super(SSD, self).__init__() self.phase = phase self.num_classes = num_classes self.cfg = (coco, voc)[num_classes == 21] self.priorbox = PriorBox(self.cfg) self.priors = Variable(self.priorbox.forward(), requires_grad=True) self.size = size self.model=model # SSD network self.base = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm( 512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
Example #8
Source File: refinedet_multibox_loss.py From RefineDet.PyTorch with MIT License | 6 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True, theta=0.01, use_ARM=False): super(RefineDetMultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance'] self.theta = theta self.use_ARM = use_ARM
Example #9
Source File: multibox_loss.py From SSD_resnet_pytorch with MIT License | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #10
Source File: multibox_loss.py From RefineDet.PyTorch with MIT License | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #11
Source File: repulsion_loss.py From repulsion_loss_ssd with MIT License | 5 votes |
def __init__(self, use_gpu=True, sigma=0.): super(RepulsionLoss, self).__init__() self.use_gpu = use_gpu self.variance = cfg['variance'] self.sigma = sigma # TODO
Example #12
Source File: multibox_loss.py From repulsion_loss_ssd with MIT License | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #13
Source File: multibox_loss.py From RefinedetLite.pytorch with MIT License | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #14
Source File: multibox_loss.py From ssd.pytorch with MIT License | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #15
Source File: multibox_loss.py From lightDSFD with MIT License | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #16
Source File: multibox_loss.py From CSD-SSD with MIT License | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #17
Source File: multibox_loss.py From multitrident with Apache License 2.0 | 5 votes |
def __init__(self, num_classes, overlap_thresh, prior_for_matching, bkg_label, neg_mining, neg_pos, neg_overlap, encode_target, use_gpu=True): super(MultiBoxLoss, self).__init__() self.use_gpu = use_gpu self.num_classes = num_classes self.threshold = overlap_thresh self.background_label = bkg_label self.encode_target = encode_target self.use_prior_for_matching = prior_for_matching self.do_neg_mining = neg_mining self.negpos_ratio = neg_pos self.neg_overlap = neg_overlap self.variance = cfg['variance']
Example #18
Source File: csd.py From CSD-SSD with MIT License | 5 votes |
def __init__(self, phase, size, base, extras, head, num_classes): super(SSD_CON, self).__init__() self.phase = phase self.num_classes = num_classes if(size==300): self.cfg = (coco, voc300)[num_classes == 21] else: self.cfg = (coco, voc512)[num_classes == 21] self.priorbox = PriorBox(self.cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) self.size = size # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) self.softmax = nn.Softmax(dim=-1) if phase == 'test': # self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)