Python data.get_loaders() Examples

The following are 1 code examples of data.get_loaders(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module data , or try the search function .
Example #1
Source File: test_modules.py    From CAMP_iccv19 with Apache License 2.0 4 votes vote down vote up
def test_CAMP_model(config_path):
    print("OK!")
    logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
    parser = argparse.ArgumentParser()
    #config_path = "./experiments/f30k_cross_attention/config_test.yaml"
    with open(config_path) as f:
        opt = yaml.load(f)
    opt = EasyDict(opt['common'])


    vocab = pickle.load(open(os.path.join(opt.vocab_path,
            '%s_vocab.pkl' % opt.data_name), 'rb'))
    opt.vocab_size = len(vocab)

    train_logger = LogCollector()

    print("----Start init model----")
    CAMP = model.CAMP(opt)
    CAMP.logger = train_logger

    if opt.resume is not None:
       ckp = torch.load(opt.resume)
       CAMP.load_state_dict(ckp["model"])

    CAMP.train_start()
    print("----Model init success----")

    """
    fake_img = torch.randn(16, 36, opt.img_dim)
    fake_text = torch.ones(16, 32).long()
    fake_lengths = torch.Tensor([32] * 16)
    fake_pos = torch.ones(16, 32).long()
    fake_ids = torch.ones(16).long()

    CAMP.train_emb(fake_img, fake_text, fake_lengths,
                   instance_ids=fake_ids)
    print("----Test train_emb success----")
    """
    
    train_loader, val_loader = data.get_loaders(
        opt.data_name, vocab, opt.crop_size, 128, 4, opt)

    test_loader = data.get_test_loader("test", opt.data_name, vocab, opt.crop_size, 128, 4, opt)

    CAMP.val_start()
    img_embs, cap_embs, cap_masks = encode_data(
        CAMP, test_loader, opt.log_step, logging.info)


    (r1, r5, r10, medr, meanr), (r1i, r5i, r10i, medri, meanri), score_matrix= i2t(img_embs, cap_embs, cap_masks, measure=opt.measure,
                                     model=CAMP, return_ranks=True)
    logging.info("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" %
                 (r1, r5, r10, medr, meanr))
    logging.info("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" %
                 (r1i, r5i, r10i, medri, meanri))