Python torch.utils.data.dataset.ConcatDataset() Examples
The following are 7
code examples of torch.utils.data.dataset.ConcatDataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.utils.data.dataset
, or try the search function
.
Example #1
Source File: charades_ego_plus_charades.py From PyVideoResearch with GNU General Public License v3.0 | 6 votes |
def get(cls, args, splits=('train', 'val', 'val_video')): newargs1 = copy.deepcopy(args) newargs2 = copy.deepcopy(args) vars(newargs1).update({ 'train_file': args.train_file.split(';')[0], 'val_file': args.val_file.split(';')[0], 'data': args.data.split(';')[0]}) vars(newargs2).update({ 'train_file': args.train_file.split(';')[1], 'val_file': args.val_file.split(';')[1], 'data': args.data.split(';')[1]}) if 'train' in splits or 'val' in splits: train_datasetego, val_datasetego, _ = CharadesEgoMeta.get(newargs1, splits=splits) else: train_datasetego, val_datasetego = None, None train_dataset, val_dataset, valvideo_dataset = super(CharadesEgoPlusCharades, cls).get(newargs2, splits=splits) if 'train' in splits: train_dataset.target_transform = transforms.Lambda(lambda x: -x) train_dataset = ConcatDataset([train_dataset] + [train_datasetego] * 3) # magic number to balance if 'val' in splits: val_dataset.target_transform = transforms.Lambda(lambda x: -x) val_dataset = ConcatDataset([val_dataset] + [val_datasetego] * 3) return train_dataset, val_dataset, valvideo_dataset
Example #2
Source File: charades_ego_video_plus_charades.py From PyVideoResearch with GNU General Public License v3.0 | 6 votes |
def get(cls, args, splits=('train', 'val', 'val_video')): newargs1 = copy.deepcopy(args) newargs2 = copy.deepcopy(args) vars(newargs1).update({ 'train_file': args.train_file.split(';')[0], 'val_file': args.val_file.split(';')[0], 'data': args.data.split(';')[0]}) vars(newargs2).update({ 'train_file': args.train_file.split(';')[1], 'val_file': args.val_file.split(';')[1], 'data': args.data.split(';')[1]}) if 'train' in splits or 'val' in splits: train_datasetego, val_datasetego, _ = CharadesEgoVideoMeta.get(newargs1, splits=splits) else: train_datasetego, val_datasetego = None, None train_dataset, val_dataset, valvideo_dataset = super(CharadesEgoVideoPlusCharades, cls).get(newargs2, splits=splits) if 'train' in splits: train_dataset.target_transform = transforms.Lambda(lambda x: -x) train_dataset = ConcatDataset([train_dataset] + [train_datasetego] * 3) # magic number to balance if 'val' in splits: val_dataset.target_transform = transforms.Lambda(lambda x: -x) val_dataset = ConcatDataset([val_dataset] + [val_datasetego] * 3) return train_dataset, val_dataset, valvideo_dataset
Example #3
Source File: charades_ego_plus_charades3.py From PyVideoResearch with GNU General Public License v3.0 | 6 votes |
def get(cls, args, splits=('train', 'val', 'val_video')): newargs1 = copy.deepcopy(args) newargs2 = copy.deepcopy(args) vars(newargs1).update({ 'train_file': args.train_file.split(';')[0], 'val_file': args.val_file.split(';')[0], 'data': args.data.split(';')[0]}) vars(newargs2).update({ 'train_file': args.train_file.split(';')[1], 'val_file': args.val_file.split(';')[1], 'data': args.data.split(';')[1]}) if 'train' in splits or 'val' in splits: train_datasetego, val_datasetego, _ = CharadesEgoMeta.get(newargs1, splits=splits) else: train_datasetego, val_datasetego = None, None train_dataset, val_dataset, valvideo_dataset = super(CharadesEgoPlusCharades3, cls).get(newargs2, splits=splits) if 'train' in splits: train_dataset.target_transform = transforms.Lambda(lambda x: -x) train_dataset = ConcatDataset([train_dataset] + [train_datasetego] * 1) # magic number to balance if 'val' in splits: val_dataset.target_transform = transforms.Lambda(lambda x: -x) val_dataset = ConcatDataset([val_dataset] + [val_datasetego] * 1) return train_dataset, val_dataset, valvideo_dataset
Example #4
Source File: charades_ego_plus_charades2.py From PyVideoResearch with GNU General Public License v3.0 | 6 votes |
def get(cls, args, splits=('train', 'val', 'val_video')): newargs1 = copy.deepcopy(args) newargs2 = copy.deepcopy(args) vars(newargs1).update({ 'train_file': args.train_file.split(';')[0], 'val_file': args.val_file.split(';')[0], 'data': args.data.split(';')[0]}) vars(newargs2).update({ 'train_file': args.train_file.split(';')[1], 'val_file': args.val_file.split(';')[1], 'data': args.data.split(';')[1]}) if 'train' in splits or 'val' in splits: train_datasetego, val_datasetego, _ = CharadesEgoMeta.get(newargs1, splits=splits) else: train_datasetego, val_datasetego = None, None train_dataset, val_dataset, valvideo_dataset = super(CharadesEgoPlusCharades2, cls).get(newargs2, splits=splits) if 'train' in splits: train_dataset.target_transform = transforms.Lambda(lambda x: -x) train_dataset = ConcatDataset([train_dataset] + [train_datasetego] * 6) # magic number to balance if 'val' in splits: val_dataset.target_transform = transforms.Lambda(lambda x: -x) val_dataset = ConcatDataset([val_dataset] + [val_datasetego] * 6) return train_dataset, val_dataset, valvideo_dataset
Example #5
Source File: dataset.py From Jacinle with MIT License | 5 votes |
def __add__(self, other): from torch.utils.data.dataset import ConcatDataset return ConcatDataset([self, other])
Example #6
Source File: charadesegoplusrgb.py From actor-observer with GNU General Public License v3.0 | 5 votes |
def get(cls, args): train_datasetego, val_datasetego, _ = charadesego.CharadesEgo.get(args) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) newargs = copy.deepcopy(args) vars(newargs).update({ 'train_file': args.original_charades_train, 'val_file': args.original_charades_test, 'data': args.original_charades_data}) train_dataset, val_dataset, valvideo_dataset = super(CharadesEgoPlusRGB, cls).get(newargs) train_dataset.transform.transforms.append(transforms.Lambda(lambda x: [x, x, x])) val_dataset.transform.transforms.append(transforms.Lambda(lambda x: [x, x, x])) valvideo_dataset.transform.transforms.append(transforms.Lambda(lambda x: [x, x, x])) train_dataset.target_transform = transforms.Lambda(lambda x: -x) val_dataset.target_transform = transforms.Lambda(lambda x: -x) valvideoego_dataset = CharadesMeta( args.data, 'val_video', args.egocentric_test_data, args.cache, args.cache_buster, transform=transforms.Compose([ transforms.Resize(int(256. / 224 * args.inputsize)), transforms.CenterCrop(args.inputsize), transforms.ToTensor(), normalize, ])) train_dataset = ConcatDataset([train_dataset] + [train_datasetego] * 6) val_dataset = ConcatDataset([val_dataset] + [val_datasetego] * 6) return train_dataset, val_dataset, valvideo_dataset, valvideoego_dataset
Example #7
Source File: dataloaders.py From ignite with BSD 3-Clause "New" or "Revised" License | 4 votes |
def get_train_val_loaders( root_path: str, train_transforms: Callable, val_transforms: Callable, batch_size: int = 16, num_workers: int = 8, val_batch_size: Optional[int] = None, with_sbd: Optional[str] = None, limit_train_num_samples: Optional[int] = None, limit_val_num_samples: Optional[int] = None, ) -> Tuple[DataLoader, DataLoader, DataLoader]: train_ds = get_train_dataset(root_path) val_ds = get_val_dataset(root_path) if with_sbd is not None: sbd_train_ds = get_train_noval_sbdataset(with_sbd) train_ds = ConcatDataset([train_ds, sbd_train_ds]) if limit_train_num_samples is not None: np.random.seed(limit_train_num_samples) train_indices = np.random.permutation(len(train_ds))[:limit_train_num_samples] train_ds = Subset(train_ds, train_indices) if limit_val_num_samples is not None: np.random.seed(limit_val_num_samples) val_indices = np.random.permutation(len(val_ds))[:limit_val_num_samples] val_ds = Subset(val_ds, val_indices) # random samples for evaluation on training dataset if len(val_ds) < len(train_ds): np.random.seed(len(val_ds)) train_eval_indices = np.random.permutation(len(train_ds))[: len(val_ds)] train_eval_ds = Subset(train_ds, train_eval_indices) else: train_eval_ds = train_ds train_ds = TransformedDataset(train_ds, transform_fn=train_transforms) val_ds = TransformedDataset(val_ds, transform_fn=val_transforms) train_eval_ds = TransformedDataset(train_eval_ds, transform_fn=val_transforms) train_loader = idist.auto_dataloader( train_ds, shuffle=True, batch_size=batch_size, num_workers=num_workers, drop_last=True, ) val_batch_size = batch_size * 4 if val_batch_size is None else val_batch_size val_loader = idist.auto_dataloader( val_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, ) train_eval_loader = idist.auto_dataloader( train_eval_ds, shuffle=False, batch_size=val_batch_size, num_workers=num_workers, drop_last=False, ) return train_loader, val_loader, train_eval_loader