Python keras.utils.conv_utils.normalize_tuple() Examples
The following are 23
code examples of keras.utils.conv_utils.normalize_tuple().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.utils.conv_utils
, or try the search function
.
Example #1
Source File: layer_utils.py From deep_learning with MIT License | 6 votes |
def __init__(self, padding=(1, 1), data_format=None, **kwargs): super(ReflectionPadding2D, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) if isinstance(padding, int): self.padding = ((padding, padding), (padding, padding)) elif hasattr(padding,"__len__"): if len(padding) != 2: raise ValueError('`padding` should have two elements. ' 'Found: ' + str(padding)) height_padding = conv_utils.normalize_tuple(padding[0], 2, "1st entry of padding") width_padding = conv_utils.normalize_tuple(padding[1], 2, "2nd entry of padding") self.padding = (height_padding, width_padding) else: raise ValueError('`padding` should be either an int, ' 'a tuple of 2 ints ' '(symmetric_height_pad, symmetric_width_pad), ' 'or a tuple of 2 tuples of 2 ints ' '((top_pad, bottom_pad), (left_pad, right_pad)). ' 'Found: ' + str(padding)) self.input_spec = InputSpec(ndim=4)
Example #2
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normalize_tuple(): assert conv_utils.normalize_tuple(5, 2, 'kernel_size') == (5, 5) assert conv_utils.normalize_tuple([7, 9], 2, 'kernel_size') == (7, 9) with pytest.raises(ValueError): conv_utils.normalize_tuple(None, 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple([2, 3, 4], 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple(['str', 'impossible'], 2, 'kernel_size')
Example #3
Source File: capslayers.py From deepcaps with MIT License | 5 votes |
def __init__(self, ch_j, n_j, kernel_size=(3, 3), strides=(1, 1), r_num=1, b_alphas=[8, 8, 8], padding='same', data_format='channels_last', dilation_rate=(1, 1), kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, activity_regularizer=None, kernel_constraint=None, **kwargs): super(Conv2DCaps, self).__init__(**kwargs) rank = 2 self.ch_j = ch_j # Number of capsules in layer J self.n_j = n_j # Number of neurons in a capsule in J self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.r_num = r_num self.b_alphas = b_alphas self.padding = conv_utils.normalize_padding(padding) #self.data_format = conv_utils.normalize_data_format(data_format) self.data_format = K.normalize_data_format(data_format) self.dilation_rate = (1, 1) self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.input_spec = InputSpec(ndim=rank + 3)
Example #4
Source File: layers.py From faceswap with GNU General Public License v3.0 | 5 votes |
def __init__(self, size=(2, 2), data_format=None, **kwargs): super().__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.size = conv_utils.normalize_tuple(size, 2, "size")
Example #5
Source File: layers.py From dfc2019 with MIT License | 5 votes |
def __init__(self, factor=(2, 2), data_format='channels_last', interpolation='nearest', **kwargs): super(ResizeImage, self).__init__(**kwargs) self.data_format = data_format self.factor = conv_utils.normalize_tuple(factor, 2, 'factor') self.input_spec = InputSpec(ndim=4) if interpolation not in ['nearest', 'bilinear']: raise ValueError('interpolation should be one ' 'of "nearest" or "bilinear".') self.interpolation = interpolation
Example #6
Source File: layers.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def __init__(self, size=(2, 2), data_format='channels_last', interpolation='nearest', **kwargs): super(UpSampling2D, self).__init__(**kwargs) self.data_format = data_format self.size = conv_utils.normalize_tuple(size, 2, 'size') self.input_spec = InputSpec(ndim=4) if interpolation not in ['nearest', 'bilinear']: raise ValueError('interpolation should be one ' 'of "nearest" or "bilinear".') self.interpolation = interpolation
Example #7
Source File: layers.py From SpaceNet_Off_Nadir_Solutions with Apache License 2.0 | 5 votes |
def __init__(self, factor=(2, 2), data_format='channels_last', interpolation='nearest', **kwargs): super(ResizeImage, self).__init__(**kwargs) self.data_format = data_format self.factor = conv_utils.normalize_tuple(factor, 2, 'factor') self.input_spec = InputSpec(ndim=4) if interpolation not in ['nearest', 'bilinear']: raise ValueError('interpolation should be one ' 'of "nearest" or "bilinear".') self.interpolation = interpolation
Example #8
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normalize_tuple(): assert conv_utils.normalize_tuple(5, 2, 'kernel_size') == (5, 5) assert conv_utils.normalize_tuple([7, 9], 2, 'kernel_size') == (7, 9) with pytest.raises(ValueError): conv_utils.normalize_tuple(None, 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple([2, 3, 4], 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple(['str', 'impossible'], 2, 'kernel_size')
Example #9
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normalize_tuple(): assert conv_utils.normalize_tuple(5, 2, 'kernel_size') == (5, 5) assert conv_utils.normalize_tuple([7, 9], 2, 'kernel_size') == (7, 9) with pytest.raises(ValueError): conv_utils.normalize_tuple(None, 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple([2, 3, 4], 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple(['str', 'impossible'], 2, 'kernel_size')
Example #10
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normalize_tuple(): assert conv_utils.normalize_tuple(5, 2, 'kernel_size') == (5, 5) assert conv_utils.normalize_tuple([7, 9], 2, 'kernel_size') == (7, 9) with pytest.raises(ValueError): conv_utils.normalize_tuple(None, 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple([2, 3, 4], 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple(['str', 'impossible'], 2, 'kernel_size')
Example #11
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normalize_tuple(): assert conv_utils.normalize_tuple(5, 2, 'kernel_size') == (5, 5) assert conv_utils.normalize_tuple([7, 9], 2, 'kernel_size') == (7, 9) with pytest.raises(ValueError): conv_utils.normalize_tuple(None, 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple([2, 3, 4], 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple(['str', 'impossible'], 2, 'kernel_size')
Example #12
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normalize_tuple(): assert conv_utils.normalize_tuple(5, 2, 'kernel_size') == (5, 5) assert conv_utils.normalize_tuple([7, 9], 2, 'kernel_size') == (7, 9) with pytest.raises(ValueError): conv_utils.normalize_tuple(None, 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple([2, 3, 4], 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple(['str', 'impossible'], 2, 'kernel_size')
Example #13
Source File: pixel_shuffler.py From df with Mozilla Public License 2.0 | 5 votes |
def __init__(self, size=(2, 2), data_format=None, **kwargs): super(PixelShuffler, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.size = conv_utils.normalize_tuple(size, 2, 'size')
Example #14
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_normalize_tuple(): assert conv_utils.normalize_tuple(5, 2, 'kernel_size') == (5, 5) assert conv_utils.normalize_tuple([7, 9], 2, 'kernel_size') == (7, 9) with pytest.raises(ValueError): conv_utils.normalize_tuple(None, 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple([2, 3, 4], 2, 'kernel_size') with pytest.raises(ValueError): conv_utils.normalize_tuple(['str', 'impossible'], 2, 'kernel_size')
Example #15
Source File: models.py From pOSAL with MIT License | 5 votes |
def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling')
Example #16
Source File: model.py From segmentation_training_pipeline with MIT License | 5 votes |
def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling')
Example #17
Source File: cifar_resnet.py From semantic-embeddings with MIT License | 5 votes |
def __init__(self, padding=1, data_format=None, **kwargs): super(ChannelPadding, self).__init__(**kwargs) self.padding = conv_utils.normalize_tuple(padding, 2, 'padding') self.data_format = normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4)
Example #18
Source File: sn.py From Coloring-greyscale-images with MIT License | 5 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format=None, dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, spectral_normalization=True, **kwargs): super(_ConvSN, self).__init__(**kwargs) self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = conv_utils.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.input_spec = InputSpec(ndim=self.rank + 2) self.spectral_normalization = spectral_normalization self.u = None
Example #19
Source File: pixel_shuffler.py From youtube-video-face-swap with MIT License | 5 votes |
def __init__(self, size=(2, 2), data_format=None, **kwargs): super(PixelShuffler, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.size = conv_utils.normalize_tuple(size, 2, 'size')
Example #20
Source File: model.py From edafa with MIT License | 5 votes |
def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling')
Example #21
Source File: exampleTrainer.py From df with Mozilla Public License 2.0 | 5 votes |
def __init__(self, size=(2, 2), data_format=None, **kwargs): super(PixelShuffler, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.size = conv_utils.normalize_tuple(size, 2, 'size')
Example #22
Source File: conv.py From Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition with GNU General Public License v3.0 | 4 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, normalize_weight=False, kernel_initializer='quaternion', bias_initializer='zeros', gamma_diag_initializer=sqrt_init, gamma_off_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, gamma_diag_regularizer=None, gamma_off_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, gamma_diag_constraint=None, gamma_off_constraint=None, init_criterion='he', seed=None, spectral_parametrization=False, epsilon=1e-7, **kwargs): super(QuaternionConv, self).__init__(**kwargs) self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = K.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.normalize_weight = normalize_weight self.init_criterion = init_criterion self.spectral_parametrization = spectral_parametrization self.epsilon = epsilon self.kernel_initializer = sanitizedInitGet(kernel_initializer) self.bias_initializer = sanitizedInitGet(bias_initializer) self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer) self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer) self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.gamma_diag_constraint = constraints.get(gamma_diag_constraint) self.gamma_off_constraint = constraints.get(gamma_off_constraint) if seed is None: self.seed = np.random.randint(1, 10e6) else: self.seed = seed self.input_spec = InputSpec(ndim=self.rank + 2)
Example #23
Source File: conv.py From deep_complex_networks with MIT License | 4 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format=None, dilation_rate=1, activation=None, use_bias=True, normalize_weight=False, kernel_initializer='complex', bias_initializer='zeros', gamma_diag_initializer=sqrt_init, gamma_off_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, gamma_diag_regularizer=None, gamma_off_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, gamma_diag_constraint=None, gamma_off_constraint=None, init_criterion='he', seed=None, spectral_parametrization=False, epsilon=1e-7, **kwargs): super(ComplexConv, self).__init__(**kwargs) self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = 'channels_last' if rank == 1 else conv_utils.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.normalize_weight = normalize_weight self.init_criterion = init_criterion self.spectral_parametrization = spectral_parametrization self.epsilon = epsilon self.kernel_initializer = sanitizedInitGet(kernel_initializer) self.bias_initializer = sanitizedInitGet(bias_initializer) self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer) self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer) self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.gamma_diag_constraint = constraints.get(gamma_diag_constraint) self.gamma_off_constraint = constraints.get(gamma_off_constraint) if seed is None: self.seed = np.random.randint(1, 10e6) else: self.seed = seed self.input_spec = InputSpec(ndim=self.rank + 2)