Python keras.utils.conv_utils.normalize_padding() Examples
The following are 11
code examples of keras.utils.conv_utils.normalize_padding().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.utils.conv_utils
, or try the search function
.
Example #1
Source File: sn.py From Coloring-greyscale-images with MIT License | 5 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format=None, dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, spectral_normalization=True, **kwargs): super(_ConvSN, self).__init__(**kwargs) self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = conv_utils.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.input_spec = InputSpec(ndim=self.rank + 2) self.spectral_normalization = spectral_normalization self.u = None
Example #2
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_invalid_padding(): with pytest.raises(ValueError): conv_utils.normalize_padding('diagonal')
Example #3
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_invalid_padding(): with pytest.raises(ValueError): conv_utils.normalize_padding('diagonal')
Example #4
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_invalid_padding(): with pytest.raises(ValueError): conv_utils.normalize_padding('diagonal')
Example #5
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_invalid_padding(): with pytest.raises(ValueError): conv_utils.normalize_padding('diagonal')
Example #6
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_invalid_padding(): with pytest.raises(ValueError): conv_utils.normalize_padding('diagonal')
Example #7
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_invalid_padding(): with pytest.raises(ValueError): conv_utils.normalize_padding('diagonal')
Example #8
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_invalid_padding(): with pytest.raises(ValueError): conv_utils.normalize_padding('diagonal')
Example #9
Source File: capslayers.py From deepcaps with MIT License | 5 votes |
def __init__(self, ch_j, n_j, kernel_size=(3, 3), strides=(1, 1), r_num=1, b_alphas=[8, 8, 8], padding='same', data_format='channels_last', dilation_rate=(1, 1), kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, activity_regularizer=None, kernel_constraint=None, **kwargs): super(Conv2DCaps, self).__init__(**kwargs) rank = 2 self.ch_j = ch_j # Number of capsules in layer J self.n_j = n_j # Number of neurons in a capsule in J self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.r_num = r_num self.b_alphas = b_alphas self.padding = conv_utils.normalize_padding(padding) #self.data_format = conv_utils.normalize_data_format(data_format) self.data_format = K.normalize_data_format(data_format) self.dilation_rate = (1, 1) self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.input_spec = InputSpec(ndim=rank + 3)
Example #10
Source File: conv.py From deep_complex_networks with MIT License | 4 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format=None, dilation_rate=1, activation=None, use_bias=True, normalize_weight=False, kernel_initializer='complex', bias_initializer='zeros', gamma_diag_initializer=sqrt_init, gamma_off_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, gamma_diag_regularizer=None, gamma_off_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, gamma_diag_constraint=None, gamma_off_constraint=None, init_criterion='he', seed=None, spectral_parametrization=False, epsilon=1e-7, **kwargs): super(ComplexConv, self).__init__(**kwargs) self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = 'channels_last' if rank == 1 else conv_utils.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.normalize_weight = normalize_weight self.init_criterion = init_criterion self.spectral_parametrization = spectral_parametrization self.epsilon = epsilon self.kernel_initializer = sanitizedInitGet(kernel_initializer) self.bias_initializer = sanitizedInitGet(bias_initializer) self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer) self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer) self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.gamma_diag_constraint = constraints.get(gamma_diag_constraint) self.gamma_off_constraint = constraints.get(gamma_off_constraint) if seed is None: self.seed = np.random.randint(1, 10e6) else: self.seed = seed self.input_spec = InputSpec(ndim=self.rank + 2)
Example #11
Source File: conv.py From Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition with GNU General Public License v3.0 | 4 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, normalize_weight=False, kernel_initializer='quaternion', bias_initializer='zeros', gamma_diag_initializer=sqrt_init, gamma_off_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, gamma_diag_regularizer=None, gamma_off_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, gamma_diag_constraint=None, gamma_off_constraint=None, init_criterion='he', seed=None, spectral_parametrization=False, epsilon=1e-7, **kwargs): super(QuaternionConv, self).__init__(**kwargs) self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = K.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.normalize_weight = normalize_weight self.init_criterion = init_criterion self.spectral_parametrization = spectral_parametrization self.epsilon = epsilon self.kernel_initializer = sanitizedInitGet(kernel_initializer) self.bias_initializer = sanitizedInitGet(bias_initializer) self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer) self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer) self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.gamma_diag_constraint = constraints.get(gamma_diag_constraint) self.gamma_off_constraint = constraints.get(gamma_off_constraint) if seed is None: self.seed = np.random.randint(1, 10e6) else: self.seed = seed self.input_spec = InputSpec(ndim=self.rank + 2)