Python util.predict_transform() Examples
The following are 7
code examples of util.predict_transform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
util
, or try the search function
.
Example #1
Source File: darknet.py From SlowFast-Network-pytorch with MIT License | 5 votes |
def forward(self, x, inp_dim, num_classes, confidence): x = x.data global CUDA prediction = x prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA) return prediction
Example #2
Source File: darknet.py From pyCAIR with GNU General Public License v3.0 | 5 votes |
def forward(self, x, inp_dim, num_classes, confidence): x = x.data global CUDA prediction = x prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA) return prediction
Example #3
Source File: darknet.py From semantic-object-accuracy-for-generative-text-to-image-synthesis with MIT License | 5 votes |
def forward(self, x, inp_dim, num_classes, confidence): x = x.data global CUDA prediction = x prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA) return prediction
Example #4
Source File: darknet.py From cvToolkit with MIT License | 5 votes |
def forward(self, x, inp_dim, num_classes, confidence): x = x.data global CUDA prediction = x prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA) return prediction
Example #5
Source File: darknet.py From hrnet with MIT License | 5 votes |
def forward(self, x, inp_dim, num_classes, confidence): x = x.data global CUDA prediction = x prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA) return prediction
Example #6
Source File: darknet.py From video-to-pose3D with MIT License | 5 votes |
def forward(self, x, inp_dim, num_classes, confidence): x = x.data global CUDA prediction = x prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA) return prediction
Example #7
Source File: darknet.py From video-to-pose3D with MIT License | 5 votes |
def forward(self, x, inp_dim, num_classes, confidence): x = x.data global CUDA prediction = x prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA) return prediction