Python util.init_logger() Examples
The following are 5
code examples of util.init_logger().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
util
, or try the search function
.
Example #1
Source File: train_seglink.py From seglink with GNU General Public License v3.0 | 5 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.train_image_height, FLAGS.train_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) util.init_logger(log_file = 'log_train_seglink_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a') config.init_config(image_shape, batch_size = FLAGS.batch_size, weight_decay = FLAGS.weight_decay, num_gpus = FLAGS.num_gpus, train_with_ignored = FLAGS.train_with_ignored, seg_loc_loss_weight = FLAGS.seg_loc_loss_weight, link_cls_loss_weight = FLAGS.link_cls_loss_weight, ) batch_size = config.batch_size batch_size_per_gpu = config.batch_size_per_gpu tf.summary.scalar('batch_size', batch_size) tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu) util.proc.set_proc_name(FLAGS.model_name + '_' + FLAGS.dataset_name) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset) return dataset
Example #2
Source File: test_batch_and_gt.py From seglink with GNU General Public License v3.0 | 5 votes |
def main(_): util.init_logger() dump_path = util.io.get_absolute_path('~/temp/no-use/seglink/') dataset = config_initialization() batch_queue = create_dataset_batch_queue(dataset) batch_size = config.batch_size summary_op = tf.summary.merge_all() with tf.Session() as sess: tf.train.start_queue_runners(sess) b_image, b_seg_label, b_seg_offsets, b_link_label = batch_queue.dequeue() batch_idx = 0; while True: #batch_idx < 50: image_data_batch, seg_label_data_batch, seg_offsets_data_batch, link_label_data_batch = \ sess.run([b_image, b_seg_label, b_seg_offsets, b_link_label]) for image_idx in xrange(batch_size): image_data = image_data_batch[image_idx, ...] seg_label_data = seg_label_data_batch[image_idx, ...] seg_offsets_data = seg_offsets_data_batch[image_idx, ...] link_label_data = link_label_data_batch[image_idx, ...] image_data = image_data + [123, 117, 104] image_data = np.asarray(image_data, dtype = np.uint8) # decode the encoded ground truth back to bboxes bboxes = seglink.seglink_to_bbox(seg_scores = seg_label_data, link_scores = link_label_data, seg_offsets_pred = seg_offsets_data) # draw bboxes on the image for bbox_idx in xrange(len(bboxes)): bbox = bboxes[bbox_idx, :] draw_bbox(image_data, bbox) image_path = util.io.join_path(dump_path, '%d_%d.jpg'%(batch_idx, image_idx)) util.plt.imwrite(image_path, image_data) print 'Make sure that the text on the image are correctly bounded\ with oriented boxes:', image_path batch_idx += 1
Example #3
Source File: train_pixel_link.py From pixel_link with MIT License | 5 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.train_image_height, FLAGS.train_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) util.init_logger( log_file = 'log_train_pixel_link_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a') config.load_config(FLAGS.train_dir) config.init_config(image_shape, batch_size = FLAGS.batch_size, weight_decay = FLAGS.weight_decay, num_gpus = FLAGS.num_gpus ) batch_size = config.batch_size batch_size_per_gpu = config.batch_size_per_gpu tf.summary.scalar('batch_size', batch_size) tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu) util.proc.set_proc_name('train_pixel_link_on'+ '_' + FLAGS.dataset_name) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset) return dataset
Example #4
Source File: train_pixel_link.py From HUAWEIOCR-2019 with MIT License | 5 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.train_image_height, FLAGS.train_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) util.init_logger( log_file = 'log_train_pixel_link_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a') config.load_config(FLAGS.train_dir) config.init_config(image_shape, batch_size = FLAGS.batch_size, weight_decay = FLAGS.weight_decay, num_gpus = FLAGS.num_gpus ) batch_size = config.batch_size batch_size_per_gpu = config.batch_size_per_gpu tf.summary.scalar('batch_size', batch_size) tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu) util.proc.set_proc_name('train_pixel_link_on'+ '_' + FLAGS.dataset_name) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset) return dataset
Example #5
Source File: cfg.py From mcsema with Apache License 2.0 | 4 votes |
def get_cfg(args, fixed_args): # Parse any additional args parser = argparse.ArgumentParser() parser.add_argument( '--recover-stack-vars', help='Flag to enable stack variable recovery', default=False, action='store_true') parser.add_argument( "--std-defs", action='append', type=str, default=[], help="std_defs file: definitions and calling conventions of imported functions and data") extra_args = parser.parse_args(fixed_args) if extra_args.recover_stack_vars: RECOVER_OPTS['stack_vars'] = True # Setup logger util.init_logger(args.log_file) # Load the binary in binja bv = util.load_binary(args.binary) # Once for good measure. bv.add_analysis_option("linearsweep") bv.update_analysis_and_wait() # Twice for good luck! bv.add_analysis_option("linearsweep") bv.update_analysis_and_wait() # Collect all paths to defs files log.debug('Parsing definitions files') def_paths = set(map(os.path.abspath, extra_args.std_defs)) def_paths.add(os.path.join(DISASS_DIR, 'defs', '{}.txt'.format(args.os))) # default defs file # Parse all of the defs files for fpath in def_paths: if os.path.isfile(fpath): parse_defs_file(bv, fpath) else: log.warn('%s is not a file', fpath) # Recover module log.debug('Starting analysis') pb_mod = recover_cfg(bv, args) # Save cfg log.debug('Saving to file: %s', args.output) with open(args.output, 'wb') as f: f.write(pb_mod.SerializeToString()) return 0