Python util.count_parameters() Examples
The following are 3
code examples of util.count_parameters().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
util
, or try the search function
.
Example #1
Source File: model.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def __init__(self, data_dir=None, is_training=True, learning_rate=0.0002, beta1=0.9, reconstr_weight=0.85, smooth_weight=0.05, ssim_weight=0.15, icp_weight=0.0, batch_size=4, img_height=128, img_width=416, seq_length=3, legacy_mode=False): self.data_dir = data_dir self.is_training = is_training self.learning_rate = learning_rate self.reconstr_weight = reconstr_weight self.smooth_weight = smooth_weight self.ssim_weight = ssim_weight self.icp_weight = icp_weight self.beta1 = beta1 self.batch_size = batch_size self.img_height = img_height self.img_width = img_width self.seq_length = seq_length self.legacy_mode = legacy_mode logging.info('data_dir: %s', data_dir) logging.info('learning_rate: %s', learning_rate) logging.info('beta1: %s', beta1) logging.info('smooth_weight: %s', smooth_weight) logging.info('ssim_weight: %s', ssim_weight) logging.info('icp_weight: %s', icp_weight) logging.info('batch_size: %s', batch_size) logging.info('img_height: %s', img_height) logging.info('img_width: %s', img_width) logging.info('seq_length: %s', seq_length) logging.info('legacy_mode: %s', legacy_mode) if self.is_training: self.reader = reader.DataReader(self.data_dir, self.batch_size, self.img_height, self.img_width, self.seq_length, NUM_SCALES) self.build_train_graph() else: self.build_depth_test_graph() self.build_egomotion_test_graph() # At this point, the model is ready. Print some info on model params. util.count_parameters()
Example #2
Source File: model.py From models with Apache License 2.0 | 4 votes |
def __init__(self, data_dir=None, is_training=True, learning_rate=0.0002, beta1=0.9, reconstr_weight=0.85, smooth_weight=0.05, ssim_weight=0.15, icp_weight=0.0, batch_size=4, img_height=128, img_width=416, seq_length=3, legacy_mode=False): self.data_dir = data_dir self.is_training = is_training self.learning_rate = learning_rate self.reconstr_weight = reconstr_weight self.smooth_weight = smooth_weight self.ssim_weight = ssim_weight self.icp_weight = icp_weight self.beta1 = beta1 self.batch_size = batch_size self.img_height = img_height self.img_width = img_width self.seq_length = seq_length self.legacy_mode = legacy_mode logging.info('data_dir: %s', data_dir) logging.info('learning_rate: %s', learning_rate) logging.info('beta1: %s', beta1) logging.info('smooth_weight: %s', smooth_weight) logging.info('ssim_weight: %s', ssim_weight) logging.info('icp_weight: %s', icp_weight) logging.info('batch_size: %s', batch_size) logging.info('img_height: %s', img_height) logging.info('img_width: %s', img_width) logging.info('seq_length: %s', seq_length) logging.info('legacy_mode: %s', legacy_mode) if self.is_training: self.reader = reader.DataReader(self.data_dir, self.batch_size, self.img_height, self.img_width, self.seq_length, NUM_SCALES) self.build_train_graph() else: self.build_depth_test_graph() self.build_egomotion_test_graph() # At this point, the model is ready. Print some info on model params. util.count_parameters()
Example #3
Source File: model.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def __init__(self, data_dir=None, is_training=True, learning_rate=0.0002, beta1=0.9, reconstr_weight=0.85, smooth_weight=0.05, ssim_weight=0.15, icp_weight=0.0, batch_size=4, img_height=128, img_width=416, seq_length=3, legacy_mode=False): self.data_dir = data_dir self.is_training = is_training self.learning_rate = learning_rate self.reconstr_weight = reconstr_weight self.smooth_weight = smooth_weight self.ssim_weight = ssim_weight self.icp_weight = icp_weight self.beta1 = beta1 self.batch_size = batch_size self.img_height = img_height self.img_width = img_width self.seq_length = seq_length self.legacy_mode = legacy_mode logging.info('data_dir: %s', data_dir) logging.info('learning_rate: %s', learning_rate) logging.info('beta1: %s', beta1) logging.info('smooth_weight: %s', smooth_weight) logging.info('ssim_weight: %s', ssim_weight) logging.info('icp_weight: %s', icp_weight) logging.info('batch_size: %s', batch_size) logging.info('img_height: %s', img_height) logging.info('img_width: %s', img_width) logging.info('seq_length: %s', seq_length) logging.info('legacy_mode: %s', legacy_mode) if self.is_training: self.reader = reader.DataReader(self.data_dir, self.batch_size, self.img_height, self.img_width, self.seq_length, NUM_SCALES) self.build_train_graph() else: self.build_depth_test_graph() self.build_egomotion_test_graph() # At this point, the model is ready. Print some info on model params. util.count_parameters()