Python steppy.base.Step() Examples
The following are 30
code examples of steppy.base.Step().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
steppy.base
, or try the search function
.
Example #1
Source File: test_base.py From steppy with MIT License | 6 votes |
def test_step_with_adapted_inputs(data): step = Step( name='test_step_wit_adapted_inputs', transformer=IdentityOperation(), input_data=['input_1', 'input_3'], adapter=Adapter({ 'img': E('input_3', 'images'), 'fea': E('input_1', 'features'), 'l1': E('input_3', 'labels'), 'l2': E('input_1', 'labels'), }) ) output = step.fit_transform(data) expected = { 'img': data['input_3']['images'], 'fea': data['input_1']['features'], 'l1': data['input_3']['labels'], 'l2': data['input_1']['labels'], } assert output == expected
Example #2
Source File: main.py From open-solution-salt-identification with MIT License | 6 votes |
def stacking_preprocessing_inference(config, model_name='network', suffix=''): reader_inference = Step(name='xy_inference{}'.format(suffix), transformer=loaders.XYSplit(train_mode=False, **config.xy_splitter[model_name]), input_data=['input'], adapter=Adapter({'meta': E('input', 'meta')}), experiment_directory=config.execution.experiment_dir) loader = Step(name='loader{}'.format(suffix), transformer=loaders.ImageSegmentationLoaderStacking(train_mode=False, **config.loaders.stacking), input_steps=[reader_inference], adapter=Adapter({'X': E(reader_inference.name, 'X'), 'y': E(reader_inference.name, 'y'), }), experiment_directory=config.execution.experiment_dir, cache_output=True) return loader
Example #3
Source File: main.py From open-solution-salt-identification with MIT License | 6 votes |
def stacking_preprocessing_train(config, model_name='network', suffix=''): reader_train = Step(name='xy_train{}'.format(suffix), transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]), input_data=['input'], adapter=Adapter({'meta': E('input', 'meta')}), experiment_directory=config.execution.experiment_dir) reader_inference = Step(name='xy_inference{}'.format(suffix), transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]), input_data=['callback_input'], adapter=Adapter({'meta': E('callback_input', 'meta_valid')}), experiment_directory=config.execution.experiment_dir) loader = Step(name='loader{}'.format(suffix), transformer=loaders.ImageSegmentationLoaderStacking(train_mode=True, **config.loaders.stacking), input_steps=[reader_train, reader_inference], adapter=Adapter({'X': E(reader_train.name, 'X'), 'y': E(reader_train.name, 'y'), 'X_valid': E(reader_inference.name, 'X'), 'y_valid': E(reader_inference.name, 'y'), }), experiment_directory=config.execution.experiment_dir) return loader
Example #4
Source File: empty_vs_non_empty.py From open-solution-salt-identification with MIT License | 6 votes |
def emptiness_preprocessing_train(config, model_name='network', suffix=''): reader_train = Step(name='xy_train{}'.format(suffix), transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]), input_data=['input'], adapter=Adapter({'meta': E('input', 'meta')}), experiment_directory=config.execution.experiment_dir) reader_inference = Step(name='xy_inference{}'.format(suffix), transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]), input_data=['callback_input'], adapter=Adapter({'meta': E('callback_input', 'meta_valid')}), experiment_directory=config.execution.experiment_dir) loader = Step(name='loader{}'.format(suffix), transformer=loaders.EmptinessLoader(train_mode=True, **config.loaders.resize), input_steps=[reader_train, reader_inference], adapter=Adapter({'X': E(reader_train.name, 'X'), 'y': E(reader_train.name, 'y'), 'X_valid': E(reader_inference.name, 'X'), 'y_valid': E(reader_inference.name, 'y'), }), experiment_directory=config.execution.experiment_dir) return loader
Example #5
Source File: pipelines.py From open-solution-ship-detection with MIT License | 6 votes |
def preprocessing_inference(config, model_name='network'): if config.general.loader_mode == 'resize': loader_config = config.loaders.resize LOADER = loaders.ImageSegmentationLoaderResize else: raise NotImplementedError reader_inference = Step(name='xy_inference', transformer=loaders.MetaReader(train_mode=False, **config.meta_reader[model_name]), input_data=['input'], adapter=Adapter({'meta': E('input', 'meta')})) loader = Step(name='loader', transformer=LOADER(train_mode=False, **loader_config), input_steps=[reader_inference], adapter=Adapter({'X': E(reader_inference.name, 'X'), 'y': E(reader_inference.name, 'y'), })) return loader
Example #6
Source File: pipelines.py From open-solution-ship-detection with MIT License | 6 votes |
def preprocessing_binary_inference(config, model_name, suffix='_binary_model'): reader_inference = Step(name='xy_inference{}'.format(suffix), transformer=loaders.MetaReader(train_mode=True, **config.meta_reader[model_name]), input_data=['input'], adapter=Adapter({'meta': E('input', 'meta')})) transformer = OneClassImageClassificatioLoader( train_mode=True, loader_params=config.loaders.resize.loader_params, dataset_params=config.loaders.resize.dataset_params, augmentation_params=config.loaders.resize.augmentation_params ) binary_loader = Step(name='loader{}'.format(suffix), transformer=transformer, input_steps=[reader_inference], adapter=Adapter({'X': E(reader_inference.name, 'X'), })) return binary_loader
Example #7
Source File: pipeline_blocks.py From open-solution-value-prediction with MIT License | 6 votes |
def data_cleaning_v2(config, train_mode, suffix, **kwargs): cleaned_data = data_cleaning_v1(config, train_mode, suffix, **kwargs) if train_mode: cleaned_data, cleaned_data_valid = cleaned_data impute_missing = Step(name='dummies_missing{}'.format(suffix), transformer=dc.DummiesMissing(**config.dummies_missing), input_steps=[cleaned_data], adapter=Adapter({'X': E(cleaned_data.name, 'numerical_features')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) if train_mode: impute_missing_valid = Step(name='dummies_missing_valid{}'.format(suffix), transformer=impute_missing, input_steps=[cleaned_data_valid], adapter=Adapter({'X': E(cleaned_data_valid.name, 'numerical_features')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return impute_missing, impute_missing_valid else: return impute_missing
Example #8
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 6 votes |
def classifier_catboost(features, config, train_mode, suffix, **kwargs): model_name = 'catboost{}'.format(suffix) if train_mode: features_train, features_valid = features catboost = Step(name=model_name, transformer=CatBoost(**config.catboost), input_data=['main_table'], input_steps=[features_train, features_valid], adapter=Adapter({'X': E(features_train.name, 'features'), 'y': E('main_table', 'y'), 'feature_names': E(features_train.name, 'feature_names'), 'categorical_features': E(features_train.name, 'categorical_features'), 'X_valid': E(features_valid.name, 'features'), 'y_valid': E('main_table', 'y_valid'), }), experiment_directory=config.pipeline.experiment_directory, **kwargs) else: catboost = Step(name=model_name, transformer=CatBoost(**config.catboost), input_steps=[features], adapter=Adapter({'X': E(features.name, 'features')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return catboost
Example #9
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 6 votes |
def classifier_xgb(features, config, train_mode, suffix, **kwargs): if train_mode: features_train, features_valid = features xgboost = Step(name='xgboost{}'.format(suffix), transformer=XGBoost(**config.xgboost), input_data=['main_table'], input_steps=[features_train, features_valid], adapter=Adapter({'X': E(features_train.name, 'features'), 'y': E('main_table', 'y'), 'feature_names': E(features_train.name, 'feature_names'), 'X_valid': E(features_valid.name, 'features'), 'y_valid': E('main_table', 'y_valid'), }), experiment_directory=config.pipeline.experiment_directory, **kwargs) else: xgboost = Step(name='xgboost{}'.format(suffix), transformer=XGBoost(**config.xgboost), input_steps=[features], adapter=Adapter({'X': E(features.name, 'features')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return xgboost
Example #10
Source File: pipelines.py From open-solution-googleai-object-detection with MIT License | 6 votes |
def visualizer(model, label_encoder, config): label_decoder = Step(name='label_decoder', transformer=GoogleAiLabelDecoder(), input_steps=[label_encoder, ], experiment_directory=config.env.cache_dirpath) decoder = Step(name='decoder', transformer=DataDecoder(**config.postprocessing.data_decoder), input_data=['input'], input_steps=[model, ], experiment_directory=config.env.cache_dirpath) visualize = Step(name='visualizer', transformer=Visualizer(), input_steps=[label_decoder, decoder], input_data=['input'], adapter=Adapter({'images_data': E('input', 'images_data'), 'results': E(decoder.name, 'results'), 'decoder_dict': E(label_decoder.name, 'inverse_mapping')}), experiment_directory=config.env.cache_dirpath) return visualize
Example #11
Source File: pipeline_blocks.py From open-solution-value-prediction with MIT License | 6 votes |
def row_aggregation_features(config, train_mode, suffix, **kwargs): bucket_nrs = config.row_aggregations.bucket_nrs row_agg_features = [] for bucket_nr in bucket_nrs: row_agg_feature = Step(name='row_agg_feature_bucket_nr{}{}'.format(bucket_nr, suffix), transformer=fe.RowAggregationFeatures(bucket_nr=bucket_nr), input_data=['input'], adapter=Adapter({'X': E('input', 'X')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) row_agg_features.append(row_agg_feature) if train_mode: row_agg_features_valid = [] for bucket_nr, row_agg_feature in zip(bucket_nrs, row_agg_features): row_agg_feature_valid = Step(name='row_agg_feature_bucket_nr{}_valid{}'.format(bucket_nr, suffix), transformer=row_agg_feature, input_data=['input'], adapter=Adapter({'X': E('input', 'X_valid')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) row_agg_features_valid.append(row_agg_feature_valid) return row_agg_features, row_agg_features_valid else: return row_agg_features
Example #12
Source File: pipelines.py From open-solution-googleai-object-detection with MIT License | 6 votes |
def postprocessing(model, label_encoder, config): label_decoder = Step(name='label_decoder', transformer=GoogleAiLabelDecoder(), input_steps=[label_encoder, ], experiment_directory=config.env.cache_dirpath) decoder = Step(name='decoder', transformer=DataDecoder(**config.postprocessing.data_decoder), input_data=['input'], input_steps=[model, ], experiment_directory=config.env.cache_dirpath) submission_producer = Step(name='submission_producer', transformer=PredictionFormatter(), input_steps=[label_decoder, decoder], input_data=['input'], adapter=Adapter({'images_data': E('input', 'images_data'), 'results': E(decoder.name, 'results'), 'decoder_dict': E(label_decoder.name, 'inverse_mapping')}), experiment_directory=config.env.cache_dirpath) return submission_producer
Example #13
Source File: test_base.py From steppy with MIT License | 6 votes |
def test_inputs_without_conflicting_names_do_not_require_adapter(data): step = Step( name='test_inputs_without_conflicting_names_do_not_require_adapter_1', transformer=IdentityOperation(), input_data=['input_1'] ) output = step.fit_transform(data) assert output == data['input_1'] step = Step( name='test_inputs_without_conflicting_names_do_not_require_adapter_2', transformer=IdentityOperation(), input_data=['input_1', 'input_2'] ) output = step.fit_transform(data) assert output == {**data['input_1'], **data['input_2']}
Example #14
Source File: empty_vs_non_empty.py From open-solution-salt-identification with MIT License | 6 votes |
def emptiness_preprocessing_inference(config, model_name='network', suffix=''): reader_inference = Step(name='xy_inference{}'.format(suffix), transformer=loaders.XYSplit(train_mode=False, **config.xy_splitter[model_name]), input_data=['input'], adapter=Adapter({'meta': E('input', 'meta')}), experiment_directory=config.execution.experiment_dir) loader = Step(name='loader{}'.format(suffix), transformer=loaders.EmptinessLoader(train_mode=False, **config.loaders.resize), input_steps=[reader_inference], adapter=Adapter({'X': E(reader_inference.name, 'X'), 'y': E(reader_inference.name, 'y'), }), experiment_directory=config.execution.experiment_dir, cache_output=True) return loader
Example #15
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _installment_payments_cleaning(config, **kwargs): installment_payments_cleaning = Step(name='installment_payments_cleaning', transformer=dc.InstallmentPaymentsCleaning( **config.preprocessing.impute_missing), input_data=['installments_payments'], adapter=Adapter({'installments': E('installments_payments', 'X')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return installment_payments_cleaning
Example #16
Source File: pipelines.py From open-solution-googleai-object-detection with MIT License | 5 votes |
def retinanet(config, train_mode, visualize=False): persist_output = False load_persisted_output = False loader = preprocessing_generator(config, is_train=train_mode) retinanet = Step(name='retinanet', transformer=Retina(**config.retinanet, train_mode=train_mode), input_steps=[loader], experiment_directory=config.env.cache_dirpath, persist_output=persist_output, is_trainable=True, load_persisted_output=load_persisted_output) if train_mode: return retinanet if visualize: return visualizer(retinanet, loader.get_step('label_encoder'), config) postprocessor = postprocessing(retinanet, loader.get_step('label_encoder'), config) output = Step(name='output', transformer=IdentityOperation(), input_steps=[postprocessor], adapter=Adapter({'y_pred': E(postprocessor.name, 'submission')}), experiment_directory=config.env.cache_dirpath, persist_output=persist_output, load_persisted_output=load_persisted_output) return output
Example #17
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _installment_payments(installment_payments_cleaned, config, **kwargs): installment_payments_hand_crafted = Step(name='installment_payments_hand_crafted', transformer=fe.InstallmentPaymentsFeatures(**config.installments_payments), input_steps=[installment_payments_cleaned], adapter=Adapter({'installments': E(installment_payments_cleaned.name, 'installments')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return installment_payments_hand_crafted
Example #18
Source File: pipelines.py From open-solution-googleai-object-detection with MIT License | 5 votes |
def preprocessing_generator(config, is_train): label_encoder = Step(name='label_encoder', transformer=GoogleAiLabelEncoder(**config.label_encoder), input_data=['metadata'], adapter=Adapter({'annotations': E('metadata', 'annotations'), 'annotations_human_labels': E('metadata', 'annotations_human_labels') }), is_trainable=True, experiment_directory=config.env.cache_dirpath) if is_train: loader = Step(name='loader', transformer=ImageDetectionLoader(train_mode=True, **config.loader), input_data=['input', 'validation_input'], input_steps=[label_encoder], adapter=Adapter({'images_data': E('input', 'images_data'), 'valid_images_data': E('validation_input', 'valid_images_data'), 'annotations': E(label_encoder.name, 'annotations'), 'annotations_human_labels': E(label_encoder.name, 'annotations_human_labels'), }), experiment_directory=config.env.cache_dirpath) else: loader = Step(name='loader', transformer=ImageDetectionLoader(train_mode=False, **config.loader), input_data=['input'], input_steps=[label_encoder], adapter=Adapter({'images_data': E('input', 'images_data'), 'annotations': None, 'annotations_human_labels': None, }), experiment_directory=config.env.cache_dirpath) return loader
Example #19
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _bureau_balance(bureau_balance_cleaned, config, **kwargs): bureau_balance_hand_crafted = Step(name='bureau_balance_hand_crafted', transformer=fe.BureauBalanceFeatures(**config.bureau_balance), input_steps=[bureau_balance_cleaned], adapter=Adapter({'bureau_balance': E(bureau_balance_cleaned.name, 'bureau_balance')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return bureau_balance_hand_crafted
Example #20
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _bureau_balance_cleaning(config, **kwargs): bureau_cleaning = Step(name='bureau_balance_cleaning', transformer=dc.BureauBalanceCleaning(**config.preprocessing.impute_missing), input_data=['bureau_balance'], adapter=Adapter({'bureau_balance': E('bureau_balance', 'X')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return bureau_cleaning
Example #21
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _bureau(bureau_cleaned, config, **kwargs): bureau_hand_crafted = Step(name='bureau_hand_crafted', transformer=fe.BureauFeatures(**config.bureau), input_steps=[bureau_cleaned], adapter=Adapter({'bureau': E(bureau_cleaned.name, 'bureau')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return bureau_hand_crafted
Example #22
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _application(application_cleaned, config, **kwargs): application_hand_crafted = Step(name='application_hand_crafted', transformer=fe.ApplicationFeatures(**config.applications), input_steps=[application_cleaned], adapter=Adapter({'application': E(application_cleaned.name, 'application')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return application_hand_crafted
Example #23
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _application_cleaning(config, **kwargs): application_cleaning = Step(name='application_cleaning', transformer=dc.ApplicationCleaning(**config.preprocessing.impute_missing), input_data=['application'], adapter=Adapter({'application': E('application', 'X')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return application_cleaning
Example #24
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _previous_applications_groupby_agg(previous_application_cleaned, config, **kwargs): previous_applications_groupby_agg = Step(name='previous_applications_groupby_agg', transformer=fe.GroupbyAggregate(**config.previous_applications), input_steps=[previous_application_cleaned], adapter=Adapter({'table': E(previous_application_cleaned.name, 'previous_application')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return previous_applications_groupby_agg
Example #25
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _pos_cash_balance_groupby_agg(pos_cash_balance_cleaned, config, **kwargs): pos_cash_balance_groupby_agg = Step(name='pos_cash_balance_groupby_agg', transformer=fe.GroupbyAggregate(**config.pos_cash_balance), input_steps=[pos_cash_balance_cleaned], adapter=Adapter({'table': E(pos_cash_balance_cleaned.name, 'pos_cash')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return pos_cash_balance_groupby_agg
Example #26
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _installments_payments_groupby_agg(installments_payments_cleaned, config, **kwargs): installments_payments_groupby_agg = Step(name='installments_payments_groupby_agg', transformer=fe.GroupbyAggregate(**config.installments_payments), input_steps=[installments_payments_cleaned], adapter=Adapter({'table': E(installments_payments_cleaned.name, 'installments')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return installments_payments_groupby_agg
Example #27
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _bureau_groupby_agg(bureau_cleaned, config, **kwargs): bureau_groupby_agg = Step(name='bureau_groupby_agg', transformer=fe.GroupbyAggregate(**config.bureau), input_steps=[bureau_cleaned], adapter=Adapter({'table': E(bureau_cleaned.name, 'bureau')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return bureau_groupby_agg
Example #28
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _application_groupby_agg(application_cleaned, config, **kwargs): application_groupby_agg = Step(name='application_groupby_agg', transformer=fe.GroupbyAggregateDiffs(**config.applications), input_steps=[application_cleaned], adapter=Adapter({'main_table': E(application_cleaned.name, 'application')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return application_groupby_agg
Example #29
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _previous_application_categorical_encoder(previous_application, config, **kwargs): categorical_encoder = Step(name='previous_application_categorical_encoder', transformer=fe.CategoricalEncoder(), input_steps=[previous_application], adapter=Adapter({'X': E(previous_application.name, 'categorical_features'), 'categorical_columns': E(previous_application.name, 'categorical_columns')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return categorical_encoder
Example #30
Source File: pipeline_blocks.py From open-solution-home-credit with MIT License | 5 votes |
def _application_previous_application_categorical_encoder(application_previous_application, config, **kwargs): categorical_encoder = Step(name='application_previous_application_categorical_encoder', transformer=fe.CategoricalEncoder(), input_steps=[application_previous_application], adapter=Adapter({'X': E(application_previous_application.name, 'categorical_features'), 'categorical_columns': E(application_previous_application.name, 'categorical_columns')}), experiment_directory=config.pipeline.experiment_directory, **kwargs) return categorical_encoder