Python datasets.create_dataset() Examples

The following are 11 code examples of datasets.create_dataset(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module datasets , or try the search function .
Example #1
Source File: train.py    From tf-imagenet with Apache License 2.0 7 votes vote down vote up
def main(extra_flags):
    # Check no unknown flags was passed.
    assert len(extra_flags) >= 1
    if len(extra_flags) > 1:
        raise ValueError('Received unknown flags: %s' % extra_flags[1:])

    # Get parameters from FLAGS passed.
    params = parameters.make_params_from_flags()
    deploy.setup_env(params)
    parameters.save_params(params, params.train_dir)

    # TF log...
    tfversion = deploy.tensorflow_version_tuple()
    deploy.log_fn('TensorFlow:  %i.%i' % (tfversion[0], tfversion[1]))

    # Create model and dataset.
    dataset = datasets.create_dataset(
        params.data_dir, params.data_name, params.data_subset)
    model = models.create_model(params.model, dataset)
    set_model_params(model, params)

    # Run CNN trainer.
    trainer = deploy.TrainerCNN(dataset, model, params)
    trainer.print_info()
    trainer.run() 
Example #2
Source File: infer_detections.py    From models with Apache License 2.0 6 votes vote down vote up
def __get_input(self):
    preprocessor = COCOPreprocessor(
      batch_size=self.args.batch_size,
      output_shapes=[[self.args.batch_size, self.args.input_size, self.args.input_size, 3]],
      num_splits=1,
      dtype=tf.float32,
      train=False,
      distortions=True,
      resize_method=None,
      shift_ratio=0
    )

    class params:
      datasets_repeat_cached_sample = False

    self.params = params()
    self.dataset = datasets.create_dataset(self.args.data_location, 'coco')
    
    return preprocessor.minibatch(
      self.dataset,
      subset='validation',
      params=self.params,
      shift_ratio=0) 
Example #3
Source File: infer_detections.py    From models with Apache License 2.0 6 votes vote down vote up
def __get_input(self):
    preprocessor = COCOPreprocessor(
      batch_size=self.args.batch_size,
      output_shapes=[[self.args.batch_size, self.args.input_size, self.args.input_size, 3]],
      num_splits=1,
      dtype=tf.float32,
      train=False,
      distortions=True,
      resize_method=None,
      shift_ratio=0
    )

    class params:
      datasets_repeat_cached_sample = False

    self.params = params()
    self.dataset = datasets.create_dataset(self.args.data_location, 'coco')
    
    return preprocessor.minibatch(
      self.dataset,
      subset='validation',
      params=self.params,
      shift_ratio=0) 
Example #4
Source File: datasets_test.py    From python-docs-samples with Apache License 2.0 6 votes vote down vote up
def test_CRUD_dataset(capsys, crud_dataset_id):
    datasets.create_dataset(
        project_id,
        cloud_region,
        crud_dataset_id)

    datasets.get_dataset(
        project_id, cloud_region, crud_dataset_id)

    datasets.list_datasets(
        project_id, cloud_region)

    datasets.delete_dataset(
        project_id, cloud_region, crud_dataset_id)

    out, _ = capsys.readouterr()

    # Check that create/get/list/delete worked
    assert 'Created dataset' in out
    assert 'Time zone' in out
    assert 'Dataset' in out
    assert 'Deleted dataset' in out 
Example #5
Source File: datasets_test.py    From python-docs-samples with Apache License 2.0 6 votes vote down vote up
def test_CRUD_dataset(capsys):
    datasets.create_dataset(
        service_account_json,
        project_id,
        cloud_region,
        dataset_id)

    datasets.get_dataset(
        service_account_json, project_id, cloud_region, dataset_id)

    datasets.list_datasets(
        service_account_json, project_id, cloud_region)

    # Test and also clean up
    datasets.delete_dataset(
        service_account_json, project_id, cloud_region, dataset_id)

    out, _ = capsys.readouterr()

    # Check that create/get/list/delete worked
    assert 'Created dataset' in out
    assert 'Time zone' in out
    assert 'Dataset' in out
    assert 'Deleted dataset' in out 
Example #6
Source File: datasets_test.py    From python-docs-samples with Apache License 2.0 6 votes vote down vote up
def test_patch_dataset(capsys):
    datasets.create_dataset(
        service_account_json,
        project_id,
        cloud_region,
        dataset_id)

    datasets.patch_dataset(
        service_account_json,
        project_id,
        cloud_region,
        dataset_id,
        time_zone)

    # Clean up
    datasets.delete_dataset(
        service_account_json, project_id, cloud_region, dataset_id)

    out, _ = capsys.readouterr()

    # Check that the patch to the time zone worked
    assert 'UTC' in out 
Example #7
Source File: eval.py    From tf-imagenet with Apache License 2.0 5 votes vote down vote up
def main(extra_flags):
    # Check no unknown flags was passed.
    assert len(extra_flags) >= 1
    if len(extra_flags) > 1:
        raise ValueError('Received unknown flags: %s' % extra_flags[1:])

    # Get parameters from FLAGS passed.
    params = parameters.make_params_from_flags()
    deploy.setup_env(params)
    # Training parameters, update using json file.
    params = replace_with_train_params(params)

    # TF log...
    tfversion = deploy.tensorflow_version_tuple()
    deploy.log_fn('TensorFlow:  %i.%i' % (tfversion[0], tfversion[1]))

    # Create model and dataset.
    dataset = datasets.create_dataset(
        params.data_dir, params.data_name, params.data_subset)
    model = models.create_model(params.model, dataset)
    train.set_model_params(model, params)

    # Set the number of batches to the size of the eval dataset.
    params = params._replace(
        num_batches=int(dataset.num_examples_per_epoch() / (params.batch_size * params.num_gpus)))
    # Run CNN trainer.
    trainer = deploy.TrainerCNN(dataset, model, params)
    trainer.print_info()
    trainer.run() 
Example #8
Source File: datasets_test.py    From python-docs-samples with Apache License 2.0 5 votes vote down vote up
def test_deidentify_dataset(capsys):
    datasets.create_dataset(
        service_account_json,
        project_id,
        cloud_region,
        dataset_id)

    datasets.deidentify_dataset(
        service_account_json,
        project_id,
        cloud_region,
        dataset_id,
        destination_dataset_id,
        keeplist_tags)

    # Clean up
    datasets.delete_dataset(
        service_account_json, project_id, cloud_region, dataset_id)
    datasets.delete_dataset(
        service_account_json,
        project_id,
        cloud_region,
        destination_dataset_id)

    out, _ = capsys.readouterr()

    # Check that de-identify worked
    assert 'De-identified data written to' in out 
Example #9
Source File: benchmark_cnn.py    From parallax with Apache License 2.0 4 votes vote down vote up
def __init__(self, params):
        """Initialize BenchmarkCNN.

        Args:
          params: Params tuple, typically created by make_params or
                  make_params_from_flags.
        Raises:
          ValueError: Unsupported params settings.
        """
        self.params = params
        if FLAGS.deterministic:
            assert self.params.data_dir is None
            self.dataset = datasets.create_dataset(None,
                                                    self.params.data_name)
        else:
            self.dataset = datasets.create_dataset(self.params.data_dir,
                                               self.params.data_name)
        self.model = model_config.get_model_config(self.params.model,
                                                   self.dataset)
        self.data_format = self.params.data_format
        self.resize_method = self.params.resize_method
        self.use_synthetic_gpu_images = self.dataset.use_synthetic_gpu_images()
        self.num_batches_for_eval = self.params.num_batches_for_eval

        if ((self.params.num_epochs_per_decay or
             self.params.learning_rate_decay_factor) and
                not (
                        self.params.learning_rate and self.params.num_epochs_per_decay and
                        self.params.learning_rate_decay_factor)):
            raise ValueError('If one of num_epochs_per_decay or '
                             'learning_rate_decay_factor is set, both must be set'
                             'and learning_rate must be set')
        if (self.params.minimum_learning_rate and
                not (
                        self.params.learning_rate and self.params.num_epochs_per_decay and
                        self.params.learning_rate_decay_factor)):
            raise ValueError('minimum_learning_rate requires learning_rate,'
                             'num_epochs_per_decay, and '
                             'learning_rate_decay_factor to be set')

        # Use the batch size from the command line if specified, otherwise use the
        # model's default batch size.  Scale the benchmark's batch size by the
        # number of GPUs.
        if self.params.batch_size > 0:
            self.model.set_batch_size(self.params.batch_size)
        self.batch_size = self.model.get_batch_size()
        self.batch_group_size = self.params.batch_group_size
        self.loss_scale = None
        self.loss_scale_normal_steps = None
        self.image_preprocessor = self.get_image_preprocessor() 
Example #10
Source File: datasets_test.py    From python-docs-samples with Apache License 2.0 4 votes vote down vote up
def test_dataset():
    @retry(
        wait_exponential_multiplier=1000,
        wait_exponential_max=10000,
        stop_max_attempt_number=10,
        retry_on_exception=retry_if_server_exception)
    def create():
        try:
            datasets.create_dataset(project_id, cloud_region, dataset_id)
        except HttpError as err:
            # We ignore 409 conflict here, because we know it's most
            # likely the first request failed on the client side, but
            # the creation suceeded on the server side.
            if err.resp.status == 409:
                print(
                    'Got exception {} while creating dataset'.format(
                        err.resp.status))
            else:
                raise
    create()

    yield

    # Clean up
    @retry(
        wait_exponential_multiplier=1000,
        wait_exponential_max=10000,
        stop_max_attempt_number=10,
        retry_on_exception=retry_if_server_exception)
    def clean_up():
        try:
            datasets.delete_dataset(project_id, cloud_region, dataset_id)
        except HttpError as err:
            # The API returns 403 when the dataset doesn't exist.
            if err.resp.status == 404 or err.resp.status == 403:
                print(
                    'Got exception {} while deleting dataset'.format(
                        err.resp.status))
            else:
                raise

    clean_up() 
Example #11
Source File: trainer.py    From GraphCMR with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def init_fn(self):
        # create training dataset
        self.train_ds = create_dataset(self.options.dataset, self.options)

        # create Mesh object
        self.mesh = Mesh()
        self.faces = self.mesh.faces.to(self.device)

        # create GraphCNN
        self.graph_cnn = GraphCNN(self.mesh.adjmat,
                           self.mesh.ref_vertices.t(),
                           num_channels=self.options.num_channels,
                           num_layers=self.options.num_layers
                          ).to(self.device)
        
        # SMPL Parameter regressor
        self.smpl_param_regressor = SMPLParamRegressor().to(self.device)

        # Setup a joint optimizer for the 2 models
        self.optimizer = torch.optim.Adam(params=list(self.graph_cnn.parameters()) + list(self.smpl_param_regressor.parameters()),
                                           lr=self.options.lr,
                                           betas=(self.options.adam_beta1, 0.999),
                                           weight_decay=self.options.wd)

        # SMPL model
        self.smpl = SMPL().to(self.device)

        # Create loss functions
        self.criterion_shape = nn.L1Loss().to(self.device)
        self.criterion_keypoints = nn.MSELoss(reduction='none').to(self.device)
        self.criterion_regr = nn.MSELoss().to(self.device)

        # Pack models and optimizers in a dict - necessary for checkpointing
        self.models_dict = {'graph_cnn': self.graph_cnn, 'smpl_param_regressor': self.smpl_param_regressor}
        self.optimizers_dict = {'optimizer': self.optimizer}
        
        # Renderer for visualization
        self.renderer = Renderer(faces=self.smpl.faces.cpu().numpy())

        # LSP indices from full list of keypoints
        self.to_lsp = list(range(14))

        # Optionally start training from a pretrained checkpoint
        # Note that this is different from resuming training
        # For the latter use --resume
        if self.options.pretrained_checkpoint is not None:
            self.load_pretrained(checkpoint_file=self.options.pretrained_checkpoint)