Python datasets.load_data() Examples
The following are 9
code examples of datasets.load_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
datasets
, or try the search function
.
Example #1
Source File: rebar_train.py From yolo_v2 with Apache License 2.0 | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)
Example #2
Source File: rebar_train.py From Gun-Detector with Apache License 2.0 | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)
Example #3
Source File: main.py From DEC-DA with MIT License | 5 votes |
def _get_data_and_model(args): # prepare dataset if args.method in ['FcDEC', 'FcIDEC', 'FcDEC-DA', 'FcIDEC-DA']: x, y = load_data(args.dataset) elif args.method in ['ConvDEC', 'ConvIDEC', 'ConvDEC-DA', 'ConvIDEC-DA']: x, y = load_data_conv(args.dataset) else: raise ValueError("Invalid value for method, which can only be in ['FcDEC', 'FcIDEC', 'ConvDEC', 'ConvIDEC', " "'FcDEC-DA', 'FcIDEC-DA', 'ConvDEC-DA', 'ConvIDEC-DA']") # prepare optimizer if args.optimizer in ['sgd', 'SGD']: optimizer = SGD(args.lr, 0.9) else: optimizer = Adam() # prepare the model n_clusters = len(np.unique(y)) if 'FcDEC' in args.method: model = FcDEC(dims=[x.shape[-1], 500, 500, 2000, 10], n_clusters=n_clusters) model.compile(optimizer=optimizer, loss='kld') elif 'FcIDEC' in args.method: model = FcIDEC(dims=[x.shape[-1], 500, 500, 2000, 10], n_clusters=n_clusters) model.compile(optimizer=optimizer, loss=['kld', 'mse'], loss_weights=[0.1, 1.0]) elif 'ConvDEC' in args.method: model = ConvDEC(input_shape=x.shape[1:], filters=[32, 64, 128, 10], n_clusters=n_clusters) model.compile(optimizer=optimizer, loss='kld') elif 'ConvIDEC' in args.method: model = ConvIDEC(input_shape=x.shape[1:], filters=[32, 64, 128, 10], n_clusters=n_clusters) model.compile(optimizer=optimizer, loss=['kld', 'mse'], loss_weights=[0.1, 1.0]) else: raise ValueError("Invalid value for method, which can only be in ['FcDEC', 'FcIDEC', 'ConvDEC', 'ConvIDEC', " "'FcDEC-DA', 'FcIDEC-DA', 'ConvDEC-DA', 'ConvIDEC-DA']") # if -DA method, we'll force aug_pretrain and aug_cluster is True if '-DA' in args.method: args.aug_pretrain = True args.aug_cluster = True return (x, y), model
Example #4
Source File: rebar_train.py From hands-detection with MIT License | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)
Example #5
Source File: rebar_train.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)
Example #6
Source File: rebar_train.py From object_detection_with_tensorflow with MIT License | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)
Example #7
Source File: rebar_train.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)
Example #8
Source File: rebar_train.py From models with Apache License 2.0 | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)
Example #9
Source File: rebar_train.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def main(): # Parse hyperparams hparams = rebar.default_hparams hparams.parse(FLAGS.hparams) print(hparams.values()) train_xs, valid_xs, test_xs = datasets.load_data(hparams) mean_xs = np.mean(train_xs, axis=0) # Compute mean centering on training training_steps = 2000000 model = getattr(rebar, hparams.model) sbn = model(hparams, mean_xs=mean_xs) scores = train(sbn, train_xs, valid_xs, test_xs, training_steps=training_steps, debug=False)