Python datasets.prepare_data() Examples
The following are 3
code examples of datasets.prepare_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
datasets
, or try the search function
.
Example #1
Source File: pretrain_DAMSM.py From DM-GAN with MIT License | 5 votes |
def evaluate(dataloader, cnn_model, rnn_model, batch_size): cnn_model.eval() rnn_model.eval() s_total_loss = 0 w_total_loss = 0 for step, data in enumerate(dataloader, 0): real_imgs, captions, cap_lens, \ class_ids, keys = prepare_data(data) words_features, sent_code = cnn_model(real_imgs[-1]) # nef = words_features.size(1) # words_features = words_features.view(batch_size, nef, -1) hidden = rnn_model.init_hidden(batch_size) words_emb, sent_emb = rnn_model(captions, cap_lens, hidden) w_loss0, w_loss1, attn = words_loss(words_features, words_emb, labels, cap_lens, class_ids, batch_size) w_total_loss += (w_loss0 + w_loss1).data s_loss0, s_loss1 = \ sent_loss(sent_code, sent_emb, labels, class_ids, batch_size) s_total_loss += (s_loss0 + s_loss1).data if step == 50: break s_cur_loss = s_total_loss[0] / step w_cur_loss = w_total_loss[0] / step return s_cur_loss, w_cur_loss
Example #2
Source File: pretrain_DAMSM.py From attn-gan with MIT License | 5 votes |
def evaluate(dataloader, cnn_model, rnn_model, batch_size): cnn_model.eval() rnn_model.eval() s_total_loss = 0 w_total_loss = 0 for step, data in enumerate(dataloader, 0): real_imgs, captions, cap_lens, \ class_ids, keys = prepare_data(data) words_features, sent_code = cnn_model(real_imgs[-1]) # nef = words_features.size(1) # words_features = words_features.view(batch_size, nef, -1) hidden = rnn_model.init_hidden(batch_size) words_emb, sent_emb = rnn_model(captions, cap_lens, hidden) w_loss0, w_loss1, attn = words_loss(words_features, words_emb, labels, cap_lens, class_ids, batch_size) w_total_loss += (w_loss0 + w_loss1).data s_loss0, s_loss1 = \ sent_loss(sent_code, sent_emb, labels, class_ids, batch_size) s_total_loss += (s_loss0 + s_loss1).data if step == 50: break s_cur_loss = s_total_loss[0] / step w_cur_loss = w_total_loss[0] / step return s_cur_loss, w_cur_loss
Example #3
Source File: pretrain_DAMSM.py From AttnGAN with MIT License | 5 votes |
def evaluate(dataloader, cnn_model, rnn_model, batch_size): cnn_model.eval() rnn_model.eval() s_total_loss = 0 w_total_loss = 0 for step, data in enumerate(dataloader, 0): real_imgs, captions, cap_lens, \ class_ids, keys = prepare_data(data) words_features, sent_code = cnn_model(real_imgs[-1]) # nef = words_features.size(1) # words_features = words_features.view(batch_size, nef, -1) hidden = rnn_model.init_hidden(batch_size) words_emb, sent_emb = rnn_model(captions, cap_lens, hidden) w_loss0, w_loss1, attn = words_loss(words_features, words_emb, labels, cap_lens, class_ids, batch_size) w_total_loss += (w_loss0 + w_loss1).data s_loss0, s_loss1 = \ sent_loss(sent_code, sent_emb, labels, class_ids, batch_size) s_total_loss += (s_loss0 + s_loss1).data if step == 50: break s_cur_loss = s_total_loss[0] / step w_cur_loss = w_total_loss[0] / step return s_cur_loss, w_cur_loss