Python object_detection.builders.box_coder_builder.build() Examples

The following are 30 code examples of object_detection.builders.box_coder_builder.build(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module object_detection.builders.box_coder_builder , or try the search function .
Example #1
Source File: model_builder.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training, add_summaries)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #2
Source File: box_coder_builder_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def test_build_keypoint_box_coder_with_non_default_parameters(self):
    box_coder_text_proto = """
      keypoint_box_coder {
        num_keypoints: 6
        y_scale: 6.0
        x_scale: 3.0
        height_scale: 7.0
        width_scale: 8.0
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertIsInstance(box_coder_object, keypoint_box_coder.KeypointBoxCoder)
    self.assertEqual(box_coder_object._num_keypoints, 6)
    self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0, 8.0]) 
Example #3
Source File: model_builder.py    From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License 6 votes vote down vote up
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #4
Source File: model_builder.py    From object_detector_app with MIT License 6 votes vote down vote up
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #5
Source File: box_coder_builder_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def test_build_keypoint_box_coder_with_non_default_parameters(self):
    box_coder_text_proto = """
      keypoint_box_coder {
        num_keypoints: 6
        y_scale: 6.0
        x_scale: 3.0
        height_scale: 7.0
        width_scale: 8.0
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertIsInstance(box_coder_object, keypoint_box_coder.KeypointBoxCoder)
    self.assertEqual(box_coder_object._num_keypoints, 6)
    self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0, 8.0]) 
Example #6
Source File: model_builder.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training, add_summaries)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #7
Source File: box_coder_builder_test.py    From yolo_v2 with Apache License 2.0 6 votes vote down vote up
def test_build_keypoint_box_coder_with_non_default_parameters(self):
    box_coder_text_proto = """
      keypoint_box_coder {
        num_keypoints: 6
        y_scale: 6.0
        x_scale: 3.0
        height_scale: 7.0
        width_scale: 8.0
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertIsInstance(box_coder_object, keypoint_box_coder.KeypointBoxCoder)
    self.assertEqual(box_coder_object._num_keypoints, 6)
    self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0, 8.0]) 
Example #8
Source File: model_builder.py    From yolo_v2 with Apache License 2.0 6 votes vote down vote up
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #9
Source File: model_builder.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training, add_summaries)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #10
Source File: model_builder.py    From HereIsWally with MIT License 6 votes vote down vote up
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #11
Source File: model_builder.py    From garbage-object-detection-tensorflow with MIT License 6 votes vote down vote up
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #12
Source File: model_builder.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
Example #13
Source File: box_coder_builder_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 5 votes vote down vote up
def test_raise_error_on_empty_box_coder(self):
    box_coder_text_proto = """
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    with self.assertRaises(ValueError):
      box_coder_builder.build(box_coder_proto) 
Example #14
Source File: box_coder_builder_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 5 votes vote down vote up
def test_build_mean_stddev_box_coder(self):
    box_coder_text_proto = """
      mean_stddev_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object,
                   mean_stddev_box_coder.MeanStddevBoxCoder)) 
Example #15
Source File: model_builder.py    From HereIsWally with MIT License 5 votes vote down vote up
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
                                 reuse_weights=None):
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
  return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
                                 reuse_weights) 
Example #16
Source File: box_coder_builder_test.py    From HereIsWally with MIT License 5 votes vote down vote up
def test_build_faster_rcnn_box_coder_with_defaults(self):
    box_coder_text_proto = """
      faster_rcnn_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(isinstance(box_coder_object,
                               faster_rcnn_box_coder.FasterRcnnBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0, 5.0]) 
Example #17
Source File: box_coder_builder_test.py    From HereIsWally with MIT License 5 votes vote down vote up
def test_build_faster_rcnn_box_coder_with_non_default_parameters(self):
    box_coder_text_proto = """
      faster_rcnn_box_coder {
        y_scale: 6.0
        x_scale: 3.0
        height_scale: 7.0
        width_scale: 8.0
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(isinstance(box_coder_object,
                               faster_rcnn_box_coder.FasterRcnnBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0, 8.0]) 
Example #18
Source File: box_coder_builder_test.py    From HereIsWally with MIT License 5 votes vote down vote up
def test_build_square_box_coder_with_defaults(self):
    box_coder_text_proto = """
      square_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object, square_box_coder.SquareBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0]) 
Example #19
Source File: box_coder_builder_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def test_build_mean_stddev_box_coder(self):
    box_coder_text_proto = """
      mean_stddev_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object,
                   mean_stddev_box_coder.MeanStddevBoxCoder)) 
Example #20
Source File: box_coder_builder_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def test_build_square_box_coder_with_defaults(self):
    box_coder_text_proto = """
      square_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object, square_box_coder.SquareBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0]) 
Example #21
Source File: box_coder_builder_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def test_build_square_box_coder_with_non_default_parameters(self):
    box_coder_text_proto = """
      square_box_coder {
        y_scale: 6.0
        x_scale: 3.0
        length_scale: 7.0
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object, square_box_coder.SquareBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0]) 
Example #22
Source File: box_coder_builder_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_raise_error_on_empty_box_coder(self):
    box_coder_text_proto = """
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    with self.assertRaises(ValueError):
      box_coder_builder.build(box_coder_proto) 
Example #23
Source File: box_coder_builder_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_build_square_box_coder_with_non_default_parameters(self):
    box_coder_text_proto = """
      square_box_coder {
        y_scale: 6.0
        x_scale: 3.0
        length_scale: 7.0
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object, square_box_coder.SquareBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0]) 
Example #24
Source File: box_coder_builder_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_build_square_box_coder_with_defaults(self):
    box_coder_text_proto = """
      square_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object, square_box_coder.SquareBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0]) 
Example #25
Source File: box_coder_builder_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_build_faster_rcnn_box_coder_with_non_default_parameters(self):
    box_coder_text_proto = """
      faster_rcnn_box_coder {
        y_scale: 6.0
        x_scale: 3.0
        height_scale: 7.0
        width_scale: 8.0
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(isinstance(box_coder_object,
                               faster_rcnn_box_coder.FasterRcnnBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [6.0, 3.0, 7.0, 8.0]) 
Example #26
Source File: box_coder_builder_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_build_faster_rcnn_box_coder_with_defaults(self):
    box_coder_text_proto = """
      faster_rcnn_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(isinstance(box_coder_object,
                               faster_rcnn_box_coder.FasterRcnnBoxCoder))
    self.assertEqual(box_coder_object._scale_factors, [10.0, 10.0, 5.0, 5.0]) 
Example #27
Source File: model_builder.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
                                 reuse_weights=None):
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
  return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
                                 reuse_weights) 
Example #28
Source File: box_coder_builder_test.py    From Person-Detection-and-Tracking with MIT License 5 votes vote down vote up
def test_raise_error_on_empty_box_coder(self):
    box_coder_text_proto = """
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    with self.assertRaises(ValueError):
      box_coder_builder.build(box_coder_proto) 
Example #29
Source File: model_builder.py    From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License 5 votes vote down vote up
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
                                 reuse_weights=None):
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
  return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
                                 reuse_weights) 
Example #30
Source File: box_coder_builder_test.py    From HereIsWally with MIT License 5 votes vote down vote up
def test_raise_error_on_empty_box_coder(self):
    box_coder_text_proto = """
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    with self.assertRaises(ValueError):
      box_coder_builder.build(box_coder_proto)