Python tensorflow.contrib.framework.is_tensor() Examples

The following are 10 code examples of tensorflow.contrib.framework.is_tensor(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.contrib.framework , or try the search function .
Example #1
Source File: estimator.py    From lambda-packs with MIT License 6 votes vote down vote up
def _verify_input_args(x, y, input_fn, feed_fn, batch_size):
  """Verifies validity of co-existance of input arguments."""
  if input_fn is None:
    if x is None:
      raise ValueError('Either x or input_fn must be provided.')

    if contrib_framework.is_tensor(x) or (y is not None and
                                          contrib_framework.is_tensor(y)):
      raise ValueError('Inputs cannot be tensors. Please provide input_fn.')

    if feed_fn is not None:
      raise ValueError('Can not provide both feed_fn and x or y.')
  else:
    if (x is not None) or (y is not None):
      raise ValueError('Can not provide both input_fn and x or y.')
    if batch_size is not None:
      raise ValueError('Can not provide both input_fn and batch_size.') 
Example #2
Source File: estimator.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def _verify_input_args(x, y, input_fn, feed_fn, batch_size):
  """Verifies validity of co-existance of input arguments."""
  if input_fn is None:
    if x is None:
      raise ValueError('Either x or input_fn must be provided.')

    if contrib_framework.is_tensor(x) or (y is not None and
                                          contrib_framework.is_tensor(y)):
      raise ValueError('Inputs cannot be tensors. Please provide input_fn.')

    if feed_fn is not None:
      raise ValueError('Can not provide both feed_fn and x or y.')
  else:
    if (x is not None) or (y is not None):
      raise ValueError('Can not provide both input_fn and x or y.')
    if batch_size is not None:
      raise ValueError('Can not provide both input_fn and batch_size.') 
Example #3
Source File: estimator.py    From keras-lambda with MIT License 6 votes vote down vote up
def _verify_input_args(x, y, input_fn, feed_fn, batch_size):
  """Verifies validity of co-existance of input arguments."""
  if input_fn is None:
    if x is None:
      raise ValueError('Either x or input_fn must be provided.')

    if contrib_framework.is_tensor(x) or (y is not None and
                                          contrib_framework.is_tensor(y)):
      raise ValueError('Inputs cannot be tensors. Please provide input_fn.')

    if feed_fn is not None:
      raise ValueError('Can not provide both feed_fn and x or y.')
  else:
    if (x is not None) or (y is not None):
      raise ValueError('Can not provide both input_fn and x or y.')
    if batch_size is not None:
      raise ValueError('Can not provide both input_fn and batch_size.') 
Example #4
Source File: estimator.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1):
  """Make inputs into input and feed functions.

  Args:
    x: Numpy, Pandas or Dask matrix or iterable.
    y: Numpy, Pandas or Dask matrix or iterable.
    input_fn: Pre-defined input function for training data.
    feed_fn: Pre-defined data feeder function.
    batch_size: Size to split data into parts. Must be >= 1.
    shuffle: Whether to shuffle the inputs.
    epochs: Number of epochs to run.

  Returns:
    Data input and feeder function based on training data.

  Raises:
    ValueError: Only one of `(x & y)` or `input_fn` must be provided.
  """
  if input_fn is None:
    if x is None:
      raise ValueError('Either x or input_fn must be provided.')

    if contrib_framework.is_tensor(x) or (y is not None and
                                          contrib_framework.is_tensor(y)):
      raise ValueError('Inputs cannot be tensors. Please provide input_fn.')

    if feed_fn is not None:
      raise ValueError('Can not provide both feed_fn and x or y.')

    df = data_feeder.setup_train_data_feeder(x, y, n_classes=None,
                                             batch_size=batch_size,
                                             shuffle=shuffle,
                                             epochs=epochs)
    return df.input_builder, df.get_feed_dict_fn()

  if (x is not None) or (y is not None):
    raise ValueError('Can not provide both input_fn and x or y.')
  if batch_size is not None:
    raise ValueError('Can not provide both input_fn and batch_size.')

  return input_fn, feed_fn 
Example #5
Source File: meta.py    From tf-matplotlib with MIT License 5 votes vote down vote up
def __init__(self, args):
        self.args = args
        self.tf_args = [(i,a) for i,a in enumerate(args) if is_tensor(a)] 
Example #6
Source File: distribution.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def __init__(self,
               dtype,
               is_continuous,
               is_reparameterized,
               validate_args,
               allow_nan_stats,
               parameters=None,
               graph_parents=None,
               name=None):
    """Constructs the `Distribution`.

    **This is a private method for subclass use.**

    Args:
      dtype: The type of the event samples. `None` implies no type-enforcement.
      is_continuous: Python boolean. If `True` this
        `Distribution` is continuous over its supported domain.
      is_reparameterized: Python boolean. If `True` this
        `Distribution` can be reparameterized in terms of some standard
        distribution with a function whose Jacobian is constant for the support
        of the standard distribution.
      validate_args: Python boolean.  Whether to validate input with asserts.
        If `validate_args` is `False`, and the inputs are invalid,
        correct behavior is not guaranteed.
      allow_nan_stats: Python boolean.  If `False`, raise an
        exception if a statistic (e.g., mean, mode) is undefined for any batch
        member. If True, batch members with valid parameters leading to
        undefined statistics will return `NaN` for this statistic.
      parameters: Python dictionary of parameters used to instantiate this
        `Distribution`.
      graph_parents: Python list of graph prerequisites of this `Distribution`.
      name: A name for this distribution. Default: subclass name.

    Raises:
      ValueError: if any member of graph_parents is `None` or not a `Tensor`.
    """
    graph_parents = [] if graph_parents is None else graph_parents
    for i, t in enumerate(graph_parents):
      if t is None or not contrib_framework.is_tensor(t):
        raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t))
    parameters = parameters or {}
    self._dtype = dtype
    self._is_continuous = is_continuous
    self._is_reparameterized = is_reparameterized
    self._allow_nan_stats = allow_nan_stats
    self._validate_args = validate_args
    self._parameters = parameters
    self._graph_parents = graph_parents
    self._name = name or type(self).__name__ 
Example #7
Source File: linear_operator.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def __init__(self,
               dtype,
               graph_parents=None,
               is_non_singular=None,
               is_self_adjoint=None,
               is_positive_definite=None,
               name=None):
    r"""Initialize the `LinearOperator`.

    **This is a private method for subclass use.**
    **Subclasses should copy-paste this `__init__` documentation.**

    Args:
      dtype: The type of the this `LinearOperator`.  Arguments to `apply` and
        `solve` will have to be this type.
      graph_parents: Python list of graph prerequisites of this `LinearOperator`
        Typically tensors that are passed during initialization.
      is_non_singular:  Expect that this operator is non-singular.
      is_self_adjoint:  Expect that this operator is equal to its hermitian
        transpose.  If `dtype` is real, this is equivalent to being symmetric.
      is_positive_definite:  Expect that this operator is positive definite,
        meaning the real part of all eigenvalues is positive.  We do not require
        the operator to be self-adjoint to be positive-definite.  See:
        https://en.wikipedia.org/wiki/Positive-definite_matrix\
            #Extension_for_non_symmetric_matrices
      name: A name for this `LinearOperator`.

    Raises:
      ValueError: if any member of graph_parents is `None` or not a `Tensor`.
    """
    # Check and auto-set flags.
    if is_positive_definite:
      if is_non_singular is False:
        raise ValueError("A positive definite matrix is always non-singular.")
      is_non_singular = True

    graph_parents = [] if graph_parents is None else graph_parents
    for i, t in enumerate(graph_parents):
      if t is None or not contrib_framework.is_tensor(t):
        raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t))
    self._dtype = dtype
    self._graph_parents = graph_parents
    self._is_non_singular = is_non_singular
    self._is_self_adjoint = is_self_adjoint
    self._is_positive_definite = is_positive_definite
    self._name = name or type(self).__name__

    # We will cache some values to avoid repeatedly adding shape
    # manipulation ops to the graph.  Cleaner.
    self._cached_shape_dynamic = None
    self._cached_batch_shape_dynamic = None
    self._cached_domain_dimension_dynamic = None
    self._cached_range_dimension_dynamic = None
    self._cached_tensor_rank_dynamic = None 
Example #8
Source File: distribution.py    From deep_image_model with Apache License 2.0 4 votes vote down vote up
def __init__(self,
               dtype,
               is_continuous,
               is_reparameterized,
               validate_args,
               allow_nan_stats,
               parameters=None,
               graph_parents=None,
               name=None):
    """Constructs the `Distribution`.

    **This is a private method for subclass use.**

    Args:
      dtype: The type of the event samples. `None` implies no type-enforcement.
      is_continuous: Python boolean. If `True` this
        `Distribution` is continuous over its supported domain.
      is_reparameterized: Python boolean. If `True` this
        `Distribution` can be reparameterized in terms of some standard
        distribution with a function whose Jacobian is constant for the support
        of the standard distribution.
      validate_args: Python boolean.  Whether to validate input with asserts.
        If `validate_args` is `False`, and the inputs are invalid,
        correct behavior is not guaranteed.
      allow_nan_stats: Python boolean.  If `False`, raise an
        exception if a statistic (e.g., mean, mode) is undefined for any batch
        member. If True, batch members with valid parameters leading to
        undefined statistics will return `NaN` for this statistic.
      parameters: Python dictionary of parameters used to instantiate this
        `Distribution`.
      graph_parents: Python list of graph prerequisites of this `Distribution`.
      name: A name for this distribution. Default: subclass name.

    Raises:
      ValueError: if any member of graph_parents is `None` or not a `Tensor`.
    """
    graph_parents = [] if graph_parents is None else graph_parents
    for i, t in enumerate(graph_parents):
      if t is None or not contrib_framework.is_tensor(t):
        raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t))
    parameters = parameters or {}
    self._dtype = dtype
    self._is_continuous = is_continuous
    self._is_reparameterized = is_reparameterized
    self._allow_nan_stats = allow_nan_stats
    self._validate_args = validate_args
    self._parameters = parameters
    self._graph_parents = graph_parents
    self._name = name or type(self).__name__ 
Example #9
Source File: distribution.py    From keras-lambda with MIT License 4 votes vote down vote up
def __init__(self,
               dtype,
               is_continuous,
               is_reparameterized,
               validate_args,
               allow_nan_stats,
               parameters=None,
               graph_parents=None,
               name=None):
    """Constructs the `Distribution`.

    **This is a private method for subclass use.**

    Args:
      dtype: The type of the event samples. `None` implies no type-enforcement.
      is_continuous: Python boolean. If `True` this
        `Distribution` is continuous over its supported domain.
      is_reparameterized: Python boolean. If `True` this
        `Distribution` can be reparameterized in terms of some standard
        distribution with a function whose Jacobian is constant for the support
        of the standard distribution.
      validate_args: Python boolean.  Whether to validate input with asserts.
        If `validate_args` is `False`, and the inputs are invalid,
        correct behavior is not guaranteed.
      allow_nan_stats: Python boolean.  If `False`, raise an
        exception if a statistic (e.g., mean, mode) is undefined for any batch
        member. If True, batch members with valid parameters leading to
        undefined statistics will return `NaN` for this statistic.
      parameters: Python dictionary of parameters used to instantiate this
        `Distribution`.
      graph_parents: Python list of graph prerequisites of this `Distribution`.
      name: A name for this distribution. Default: subclass name.

    Raises:
      ValueError: if any member of graph_parents is `None` or not a `Tensor`.
    """
    graph_parents = [] if graph_parents is None else graph_parents
    for i, t in enumerate(graph_parents):
      if t is None or not contrib_framework.is_tensor(t):
        raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t))
    parameters = parameters or {}
    self._dtype = dtype
    self._is_continuous = is_continuous
    self._is_reparameterized = is_reparameterized
    self._allow_nan_stats = allow_nan_stats
    self._validate_args = validate_args
    self._parameters = parameters
    self._graph_parents = graph_parents
    self._name = name or type(self).__name__ 
Example #10
Source File: linear_operator.py    From keras-lambda with MIT License 4 votes vote down vote up
def __init__(self,
               dtype,
               graph_parents=None,
               is_non_singular=None,
               is_self_adjoint=None,
               is_positive_definite=None,
               name=None):
    r"""Initialize the `LinearOperator`.

    **This is a private method for subclass use.**
    **Subclasses should copy-paste this `__init__` documentation.**

    Args:
      dtype: The type of the this `LinearOperator`.  Arguments to `apply` and
        `solve` will have to be this type.
      graph_parents: Python list of graph prerequisites of this `LinearOperator`
        Typically tensors that are passed during initialization.
      is_non_singular:  Expect that this operator is non-singular.
      is_self_adjoint:  Expect that this operator is equal to its hermitian
        transpose.  If `dtype` is real, this is equivalent to being symmetric.
      is_positive_definite:  Expect that this operator is positive definite,
        meaning the real part of all eigenvalues is positive.  We do not require
        the operator to be self-adjoint to be positive-definite.  See:
        https://en.wikipedia.org/wiki/Positive-definite_matrix\
            #Extension_for_non_symmetric_matrices
      name: A name for this `LinearOperator`.

    Raises:
      ValueError: if any member of graph_parents is `None` or not a `Tensor`.
    """
    # Check and auto-set flags.
    if is_positive_definite:
      if is_non_singular is False:
        raise ValueError("A positive definite matrix is always non-singular.")
      is_non_singular = True

    graph_parents = [] if graph_parents is None else graph_parents
    for i, t in enumerate(graph_parents):
      if t is None or not contrib_framework.is_tensor(t):
        raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t))
    self._dtype = dtype
    self._graph_parents = graph_parents
    self._is_non_singular = is_non_singular
    self._is_self_adjoint = is_self_adjoint
    self._is_positive_definite = is_positive_definite
    self._name = name or type(self).__name__

    # We will cache some values to avoid repeatedly adding shape
    # manipulation ops to the graph.  Cleaner.
    self._cached_shape_dynamic = None
    self._cached_batch_shape_dynamic = None
    self._cached_domain_dimension_dynamic = None
    self._cached_range_dimension_dynamic = None
    self._cached_tensor_rank_dynamic = None