Python tensorflow.contrib.framework.list_variables() Examples
The following are 19
code examples of tensorflow.contrib.framework.list_variables().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.framework
, or try the search function
.
Example #1
Source File: composable_model.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def get_weights(self, model_dir): """Returns weights per feature of the linear part. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The weights created by this model (without the optimizer weights). """ all_variables = [name for name, _ in list_variables(model_dir)] values = {} optimizer_regex = r".*/" + self._get_optimizer().get_name() + r"(_\d)?$" for name in all_variables: if (name.startswith(self._scope + "/") and name != self._scope + "/bias_weight" and not re.match(optimizer_regex, name)): values[name] = load_variable(model_dir, name) if len(values) == 1: return values[list(values.keys())[0]] return values
Example #2
Source File: composable_model.py From keras-lambda with MIT License | 6 votes |
def get_weights(self, model_dir): """Returns weights per feature of the linear part. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The weights created by this model (without the optimizer weights). """ all_variables = [name for name, _ in list_variables(model_dir)] values = {} optimizer_regex = r".*/" + self._get_optimizer().get_name() + r"(_\d)?$" for name in all_variables: if (name.startswith(self._scope + "/") and name != self._scope + "/bias_weight" and not re.match(optimizer_regex, name)): values[name] = load_variable(model_dir, name) if len(values) == 1: return values[list(values.keys())[0]] return values
Example #3
Source File: composable_model.py From deep_image_model with Apache License 2.0 | 6 votes |
def get_weights(self, model_dir): """Returns weights per feature of the linear part. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The weights created by this model (without the optimizer weights). """ all_variables = [name for name, _ in list_variables(model_dir)] values = {} optimizer_regex = r".*/" + self._get_optimizer().get_name() + r"(_\d)?$" for name in all_variables: if (name.startswith(self._scope + "/") and name != self._scope + "/bias_weight" and not re.match(optimizer_regex, name)): values[name] = load_variable(model_dir, name) if len(values) == 1: return values[list(values.keys())[0]] return values
Example #4
Source File: composable_model.py From lambda-packs with MIT License | 6 votes |
def get_weights(self, model_dir): """Returns weights per feature of the linear part. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The weights created by this model (without the optimizer weights). """ all_variables = [name for name, _ in list_variables(model_dir)] values = {} optimizer_regex = r".*/" + self._get_optimizer().get_name() + r"(_\d)?$" for name in all_variables: if (name.startswith(self._scope + "/") and name != self._scope + "/bias_weight" and not re.match(optimizer_regex, name)): values[name] = load_variable(model_dir, name) if len(values) == 1: return values[list(values.keys())[0]] return values
Example #5
Source File: estimator.py From deep_image_model with Apache License 2.0 | 5 votes |
def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)]
Example #6
Source File: estimator.py From keras-lambda with MIT License | 5 votes |
def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)]
Example #7
Source File: Saver.py From TrackR-CNN with MIT License | 5 votes |
def _create_load_init_saver(self, filename): if self.load != "": return None if len(glob.glob(self.model_dir + self.model + "-*.index")) > 0: return None if filename == "" or filename.endswith(".pickle") or filename.startswith("DeepLabRGB:"): return None from tensorflow.contrib.framework import list_variables vars_and_shapes_file = [x for x in list_variables(filename) if x[0] != "global_step"] vars_file = [x[0] for x in vars_and_shapes_file] vars_to_shapes_file = {x[0]: x[1] for x in vars_and_shapes_file} vars_model = tf.global_variables() assert all([x.name.endswith(":0") for x in vars_model]) vars_intersection = [x for x in vars_model if x.name[:-2] in vars_file] vars_missing_in_graph = [x for x in vars_model if x.name[:-2] not in vars_file and "Adam" not in x.name and "beta1_power" not in x.name and "beta2_power" not in x.name] if len(vars_missing_in_graph) > 0: print("the following variables will not be initialized since they are not present in the initialization model", [v.name for v in vars_missing_in_graph], file=log.v1) var_names_model = [x.name for x in vars_model] vars_missing_in_file = [x for x in vars_file if x + ":0" not in var_names_model and "RMSProp" not in x and "Adam" not in x and "Momentum" not in x] if len(vars_missing_in_file) > 0: print("the following variables will not be loaded from the file since they are not present in the graph", vars_missing_in_file, file=log.v1) vars_shape_mismatch = [x for x in vars_intersection if x.shape.as_list() != vars_to_shapes_file[x.name[:-2]]] if len(vars_shape_mismatch) > 0: print("the following variables will not be loaded from the file since the shapes in the graph and in the file " "don't match:", [(x.name, x.shape) for x in vars_shape_mismatch if "Adam" not in x.name], file=log.v1) vars_intersection = [x for x in vars_intersection if x not in vars_shape_mismatch] return tf.train.Saver(var_list=vars_intersection)
Example #8
Source File: Saver.py From PReMVOS with MIT License | 5 votes |
def _create_load_init_saver(self, filename): if self.load != "": return None if len(glob.glob(self.model_dir + self.model + "-*.index")) > 0: return None if filename == "" or filename.endswith(".pickle") or filename.startswith("DeepLabRGB:"): return None vars_and_shapes_file = [x for x in list_variables(filename) if x[0] != "global_step"] vars_file = [x[0] for x in vars_and_shapes_file] vars_to_shapes_file = {x[0]: x[1] for x in vars_and_shapes_file} vars_model = tf.global_variables() assert all([x.name.endswith(":0") for x in vars_model]) vars_intersection = [x for x in vars_model if x.name[:-2] in vars_file] vars_missing_in_graph = [x for x in vars_model if x.name[:-2] not in vars_file and "Adam" not in x.name and "beta1_power" not in x.name and "beta2_power" not in x.name] if len(vars_missing_in_graph) > 0: print("the following variables will not be initialized since they are not present in the initialization model", [v.name for v in vars_missing_in_graph], file=log.v1) var_names_model = [x.name for x in vars_model] vars_missing_in_file = [x for x in vars_file if x + ":0" not in var_names_model and "RMSProp" not in x and "Adam" not in x and "Momentum" not in x] if len(vars_missing_in_file) > 0: print("the following variables will not be loaded from the file since they are not present in the graph", vars_missing_in_file, file=log.v1) vars_shape_mismatch = [x for x in vars_intersection if x.shape.as_list() != vars_to_shapes_file[x.name[:-2]]] if len(vars_shape_mismatch) > 0: print("the following variables will not be loaded from the file since the shapes in the graph and in the file " "don't match:", [(x.name, x.shape) for x in vars_shape_mismatch if "Adam" not in x.name], file=log.v1) vars_intersection = [x for x in vars_intersection if x not in vars_shape_mismatch] return tf.train.Saver(var_list=vars_intersection)
Example #9
Source File: Engine.py From PReMVOS with MIT License | 5 votes |
def _create_load_init_saver(self, filename): if self.load != "": return None if len(glob.glob(self.model_dir + self.model + "-*.index")) > 0: return None if filename == "" or filename.endswith(".pickle"): return None vars_and_shapes_file = [x for x in list_variables(filename) if x[0] != "global_step"] vars_file = [x[0] for x in vars_and_shapes_file] vars_to_shapes_file = {x[0]: x[1] for x in vars_and_shapes_file} vars_model = tf.global_variables() assert all([x.name.endswith(":0") for x in vars_model]) vars_intersection = [x for x in vars_model if x.name[:-2] in vars_file] vars_missing_in_graph = [x for x in vars_model if x.name[:-2] not in vars_file and "Adam" not in x.name and "beta1_power" not in x.name and "beta2_power" not in x.name] if len(vars_missing_in_graph) > 0: print("the following variables will not be initialized since they are not present in the " \ "initialization model", [v.name for v in vars_missing_in_graph]) var_names_model = [x.name for x in vars_model] vars_missing_in_file = [x for x in vars_file if x + ":0" not in var_names_model and "RMSProp" not in x and "Adam" not in x and "Momentum" not in x] if len(vars_missing_in_file) > 0: print("the following variables will not be loaded from the file since they are not present in the " \ "graph", vars_missing_in_file) vars_shape_mismatch = [x for x in vars_intersection if x.shape.as_list() != vars_to_shapes_file[x.name[:-2]]] if len(vars_shape_mismatch) > 0: print("the following variables will not be loaded from the file since the shapes in the graph and in" \ " the file don't match:", [(x.name, x.shape) for x in vars_shape_mismatch if "Adam" not in x.name]) vars_intersection = [x for x in vars_intersection if x not in vars_shape_mismatch] return tf.train.Saver(var_list=vars_intersection)
Example #10
Source File: pretrain_layer.py From ASR with Apache License 2.0 | 5 votes |
def available_variables_without_global_step(checkpoint_dir): import tensorflow.contrib.framework as tff all_vars = tf.global_variables() all_available_vars = tff.list_variables(checkpoint_dir=checkpoint_dir) all_available_vars = dict(all_available_vars) available_vars = [] for v in all_vars: vname = v.name.split(':')[0] if vname == 'global_step': continue if vname in all_available_vars and v.get_shape() == all_available_vars[vname]: available_vars.append(v) return available_vars
Example #11
Source File: pretrain.py From ASR with Apache License 2.0 | 5 votes |
def available_variables_without_global_step(checkpoint_dir): import tensorflow.contrib.framework as tff all_vars = tf.global_variables() all_available_vars = tff.list_variables(checkpoint_dir=checkpoint_dir) all_available_vars = dict(all_available_vars) available_vars = [] for v in all_vars: vname = v.name.split(':')[0] if vname == 'global_step': continue if vname in all_available_vars and v.get_shape() == all_available_vars[vname]: available_vars.append(v) return available_vars
Example #12
Source File: utils.py From ASR with Apache License 2.0 | 5 votes |
def available_variables(checkpoint_dir): all_vars = tf.global_variables() all_available_vars = tff.list_variables(checkpoint_dir=checkpoint_dir) all_available_vars = dict(all_available_vars) available_vars = [] for v in all_vars: vname = v.name.split(':')[0] if vname in all_available_vars and v.get_shape() == all_available_vars[vname]: available_vars.append(v) return available_vars
Example #13
Source File: pretrain_layerblock.py From ASR with Apache License 2.0 | 5 votes |
def available_variables_without_global_step(checkpoint_dir): import tensorflow.contrib.framework as tff all_vars = tf.global_variables() all_available_vars = tff.list_variables(checkpoint_dir=checkpoint_dir) all_available_vars = dict(all_available_vars) available_vars = [] for v in all_vars: vname = v.name.split(':')[0] if vname == 'global_step': continue if vname in all_available_vars and v.get_shape() == all_available_vars[vname]: available_vars.append(v) return available_vars
Example #14
Source File: dnn.py From deep_image_model with Apache License 2.0 | 5 votes |
def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self._model_dir)]
Example #15
Source File: svm.py From deep_image_model with Apache License 2.0 | 5 votes |
def weights_(self): values = {} optimizer_regex = r".*/"+self._optimizer.get_name() + r"(_\d)?$" for name, _ in list_variables(self._model_dir): if (name.startswith("linear/") and name != "linear/bias_weight" and not re.match(optimizer_regex, name)): values[name] = load_variable(self._model_dir, name) if len(values) == 1: return values[list(values.keys())[0]] return values
Example #16
Source File: svm.py From deep_image_model with Apache License 2.0 | 5 votes |
def get_variable_names(self): return [name for name, _ in list_variables(self._model_dir)]
Example #17
Source File: Saver.py From MOTSFusion with MIT License | 5 votes |
def _create_load_init_saver(self, filename): if self.load != "": return None if len(glob.glob(self.model_dir + self.model + "-*.index")) > 0: return None if filename == "" or filename.endswith(".pickle") or filename.startswith("DeepLabRGB:"): return None vars_and_shapes_file = [x for x in list_variables(filename) if x[0] != "global_step"] vars_file = [x[0] for x in vars_and_shapes_file] vars_to_shapes_file = {x[0]: x[1] for x in vars_and_shapes_file} vars_model = tf.global_variables() assert all([x.name.endswith(":0") for x in vars_model]) vars_intersection = [x for x in vars_model if x.name[:-2] in vars_file] vars_missing_in_graph = [x for x in vars_model if x.name[:-2] not in vars_file and "Adam" not in x.name and "beta1_power" not in x.name and "beta2_power" not in x.name] if len(vars_missing_in_graph) > 0: print("the following variables will not be initialized since they are not present in the initialization model", [v.name for v in vars_missing_in_graph], file=log.v1) var_names_model = [x.name for x in vars_model] vars_missing_in_file = [x for x in vars_file if x + ":0" not in var_names_model and "RMSProp" not in x and "Adam" not in x and "Momentum" not in x] if len(vars_missing_in_file) > 0: print("the following variables will not be loaded from the file since they are not present in the graph", vars_missing_in_file, file=log.v1) vars_shape_mismatch = [x for x in vars_intersection if x.shape.as_list() != vars_to_shapes_file[x.name[:-2]]] if len(vars_shape_mismatch) > 0: print("the following variables will not be loaded from the file since the shapes in the graph and in the file " "don't match:", [(x.name, x.shape) for x in vars_shape_mismatch if "Adam" not in x.name], file=log.v1) vars_intersection = [x for x in vars_intersection if x not in vars_shape_mismatch] return tf.train.Saver(var_list=vars_intersection)
Example #18
Source File: estimator.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)]
Example #19
Source File: estimator.py From lambda-packs with MIT License | 5 votes |
def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)]