Python preprocess.get_transform() Examples
The following are 5
code examples of preprocess.get_transform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
preprocess
, or try the search function
.
Example #1
Source File: data.py From convNet.pytorch with MIT License | 6 votes |
def get_loader(self, force_update=False, override_settings=None, subset_indices=None): if force_update or self.regime.update(self.epoch, self.steps): setting = self.get_setting() if override_settings is not None: setting.update(override_settings) self._transform = get_transform(**setting['transform']) setting['data'].setdefault('transform', self._transform) self._data = get_dataset(**setting['data']) if subset_indices is not None: self._data = Subset(self._data, subset_indices) if setting['other'].get('distributed', False): setting['loader']['sampler'] = DistributedSampler(self._data) setting['loader']['shuffle'] = None # pin-memory currently broken for distributed setting['loader']['pin_memory'] = False self._sampler = setting['loader'].get('sampler', None) self._loader = torch.utils.data.DataLoader( self._data, **setting['loader']) return self._loader
Example #2
Source File: trainLoaderN.py From DeepLiDAR with MIT License | 6 votes |
def __getitem__(self, index): left = self.left[index] normal = self.normal[index] gt = self.gts[index] left_img = self.loader(left) w,h = left_img.size input1,mask1 = self.inloader(gt) sparse,mask = self.sloader(normal) th, tw = 256, 512 x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) left_img = left_img.crop((x1, y1, x1 + tw, y1 + th)) data_in1 = input1[y1:y1 + th, x1:x1 + tw,:] sparse_n = sparse[y1:y1 + th, x1:x1 + tw,:] mask = mask[y1:y1 + th, x1:x1 + tw,:] mask1 = mask1[y1:y1 + th, x1:x1 + tw, :] processed = preprocess.get_transform(augment=False) # processed = scale_crop2() left_img = processed(left_img) sparse_n = processed(sparse_n) return left_img,sparse_n,mask,mask1,data_in1
Example #3
Source File: RGB_Loader.py From 360SD-Net with MIT License | 5 votes |
def __getitem__(self, index): up = self.up[index] down = self.down[index] disp_name= self.disp_name[index] equi_info = self.equi_infos up_img = self.loader(up) down_img = self.loader(down) disp = self.dploader(disp_name) up_img = np.concatenate([np.array(up_img), equi_info],2) down_img = np.concatenate([np.array(down_img), equi_info],2) if self.training: h, w = up_img.shape[0], up_img.shape[1] th, tw = 512, 256 # vertical remaining cropping x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) up_img = up_img[y1:y1+th, x1:x1+tw, :] down_img = down_img[y1:y1+th, x1:x1+tw, :] disp = np.ascontiguousarray(disp,dtype=np.float32) disp = disp[y1:y1 + th, x1:x1 + tw] # preprocessing processed = preprocess.get_transform(augment=False) up_img = processed(up_img) down_img = processed(down_img) return up_img, down_img, disp else: disp = np.ascontiguousarray(disp,dtype=np.float32) processed = preprocess.get_transform(augment=False) up_img = processed(up_img) down_img = processed(down_img) return up_img, down_img, disp
Example #4
Source File: trainLoader.py From DeepLiDAR with MIT License | 5 votes |
def __getitem__(self, index): left = self.left[index] input = self.input[index] sparse = self.sparse[index] left_img = self.loader(left) index_str = self.left[index].split('/')[-4][0:10] params_t = INSTICS[index_str] params = np.ones((256,512,3),dtype=np.float32) params[:, :, 0] = params[:,:,0] * params_t[0] params[:, :, 1] = params[:, :, 1] * params_t[1] params[:, :, 2] = params[:, :, 2] * params_t[2] h,w,c= left_img.shape input1 = self.inloader(input) sparse,mask = self.sloader(sparse) th, tw = 256,512 x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) mask = np.reshape(mask, [sparse.shape[0], sparse.shape[1], 1]).astype(np.float32) params = np.reshape(params, [256, 512, 3]).astype(np.float32) left_img = left_img[y1:y1 + th, x1:x1 + tw, :] data_in1 = input1[y1:y1 + th, x1:x1 + tw,:] sparse = sparse[y1:y1 + th, x1:x1 + tw, :] mask = mask[y1:y1 + th, x1:x1 + tw,:] processed = preprocess.get_transform(augment=False) left_img = processed(left_img) sparse = processed(sparse) mask = processed(mask) return left_img,data_in1,sparse,mask,params
Example #5
Source File: KITTILoader.py From PSMNet with MIT License | 4 votes |
def __getitem__(self, index): left = self.left[index] right = self.right[index] disp_L= self.disp_L[index] left_img = self.loader(left) right_img = self.loader(right) dataL = self.dploader(disp_L) if self.training: w, h = left_img.size th, tw = 256, 512 x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) left_img = left_img.crop((x1, y1, x1 + tw, y1 + th)) right_img = right_img.crop((x1, y1, x1 + tw, y1 + th)) dataL = np.ascontiguousarray(dataL,dtype=np.float32)/256 dataL = dataL[y1:y1 + th, x1:x1 + tw] processed = preprocess.get_transform(augment=False) left_img = processed(left_img) right_img = processed(right_img) return left_img, right_img, dataL else: w, h = left_img.size left_img = left_img.crop((w-1232, h-368, w, h)) right_img = right_img.crop((w-1232, h-368, w, h)) w1, h1 = left_img.size dataL = dataL.crop((w-1232, h-368, w, h)) dataL = np.ascontiguousarray(dataL,dtype=np.float32)/256 processed = preprocess.get_transform(augment=False) left_img = processed(left_img) right_img = processed(right_img) return left_img, right_img, dataL