Python sympy.nan() Examples
The following are 8
code examples of sympy.nan().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sympy
, or try the search function
.
Example #1
Source File: test_sympy_conv.py From symengine.py with MIT License | 6 votes |
def test_constants(): assert sympify(sympy.E) == E assert sympy.E == E._sympy_() assert sympify(sympy.pi) == pi assert sympy.pi == pi._sympy_() assert sympify(sympy.GoldenRatio) == GoldenRatio assert sympy.GoldenRatio == GoldenRatio._sympy_() assert sympify(sympy.Catalan) == Catalan assert sympy.Catalan == Catalan._sympy_() assert sympify(sympy.EulerGamma) == EulerGamma assert sympy.EulerGamma == EulerGamma._sympy_() assert sympify(sympy.oo) == oo assert sympy.oo == oo._sympy_() assert sympify(sympy.zoo) == zoo assert sympy.zoo == zoo._sympy_() assert sympify(sympy.nan) == nan assert sympy.nan == nan._sympy_()
Example #2
Source File: ts.py From tsalib with Apache License 2.0 | 6 votes |
def __init__ (self, decl, exists_ok, cache): ''' :decl: declaration string of variable ('Batch(b):20') :exists_ok: if declared earlier, nop :cache: store in `decls` cache ''' assert isinstance(decl, str) decl = decl.strip() m = re.search(DimVar.parse_regexp, decl) name, sname, val = m.groups() #print (m.groups()) self._name = name self._sname = sname if sname is not None else name self._val = int(val) if val is not None else nan self._e = Symbol(self._sname) if self._e in DimVar.decls: prevd = DimVar.decls[self._e] if not exists_ok: raise ValueError(f'DimVar {self._sname} already declared as {prevd._name}({self._e}). Use exists_ok=True to skip check.') else: if cache: DimVar.decls[self._e] = self
Example #3
Source File: ts.py From tsalib with Apache License 2.0 | 6 votes |
def __init__(self, t, is_dvar=False): self._e = None #self.is_dvar = is_dvar # a basic dimension var self.dim_var = None self._val = None #value of dimvar (nan if not set) if isinstance(t, int): self._e = Integer(t) self._val = t elif isinstance(t, DimVar): self._e, self._val, self.dim_var = t.exp, t.size, t elif isinstance(t, DimExpr): self._e, self._val, self.dim_var = t._e, t._val, t.dim_var else: #print (f'test expr: {v} {repr(type(v))}') self._e = t self._val = DimVar.eval(t) #self._val = int(v) if v is not nan else v
Example #4
Source File: ts.py From tsalib with Apache License 2.0 | 5 votes |
def len(self): return self._val if (self._val != nan) else None
Example #5
Source File: ts.py From tsalib with Apache License 2.0 | 5 votes |
def __int__(self): #print(f'called int {self._val}') if self._val != nan: return int(self._val) else: #return DimExpr.DEFAULT_VALUE raise ValueError(f'Cannot cast to integer: Default value of {self._e} not provided')
Example #6
Source File: ts.py From tsalib with Apache License 2.0 | 5 votes |
def __eq__(self, d): #print (f'eq: {self}, {d}') if isinstance(d, int): #semantics: any integer matches nan if self._val == nan: return True else: return self._val == d elif isinstance(d, DimExpr): res = self._e == d._e #print (res) return res else: return False
Example #7
Source File: _helpers.py From quadpy with GNU General Public License v3.0 | 5 votes |
def _atan2_0(X): """Like sympy.atan2, but return 0 for x=y=0. Mathematically, the value is undefined, so sympy returns NaN, but for the sake of the coordinate conversion, its value doesn't matter. NaNs, however, produce NaNs down the line. """ out = numpy.array([sympy.atan2(X[k, 1], X[k, 0]) for k in range(len(X))]) out[out == sympy.nan] = 0 return out
Example #8
Source File: queries.py From devito with MIT License | 5 votes |
def q_affine(expr, vars): """ Return True if ``expr`` is (separately) affine in the variables ``vars``, False otherwise. Notes ----- Exploits: https://stackoverflow.com/questions/36283548\ /check-if-an-equation-is-linear-for-a-specific-set-of-variables/ """ vars = as_tuple(vars) free_symbols = expr.free_symbols # At this point, `expr` is (separately) affine in the `vars` variables # if all non-mixed second order derivatives are identically zero. for x in vars: if expr is x: continue if x not in free_symbols: # At this point the only hope is that `expr` is constant return q_constant(expr) # The vast majority of calls here are incredibly simple tests # like q_affine(x+1, [x]). Catch these quickly and # explicitly, instead of calling the very slow function `diff`. if expr.is_Add and len(expr.args) == 2: if expr.args[1] is x and expr.args[0].is_Number: continue if expr.args[0] is x and expr.args[1].is_Number: continue try: if diff(expr, x) is nan or not Eq(diff(expr, x, x), 0): return False except TypeError: return False return True