Python sympy.Sum() Examples
The following are 7
code examples of sympy.Sum().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sympy
, or try the search function
.
Example #1
Source File: loop_pulse_template.py From qupulse with MIT License | 6 votes |
def duration(self) -> ExpressionScalar: step_size = self._loop_range.step.sympified_expression loop_index = sympy.symbols(self._loop_index) sum_index = sympy.symbols(self._loop_index) # replace loop_index with sum_index dependable expression body_duration = self.body.duration.sympified_expression.subs({loop_index: self._loop_range.start.sympified_expression + sum_index*step_size}) # number of sum contributions step_count = sympy.ceiling((self._loop_range.stop.sympified_expression-self._loop_range.start.sympified_expression) / step_size) sum_start = 0 sum_stop = sum_start + (sympy.functions.Max(step_count, 1) - 1) # expression used if step_count >= 0 finite_duration_expression = sympy.Sum(body_duration, (sum_index, sum_start, sum_stop)) duration_expression = sympy.Piecewise((0, step_count <= 0), (finite_duration_expression, True)) return ExpressionScalar(duration_expression)
Example #2
Source File: loop_pulse_template.py From qupulse with MIT License | 6 votes |
def integral(self) -> Dict[ChannelID, ExpressionScalar]: step_size = self._loop_range.step.sympified_expression loop_index = sympy.symbols(self._loop_index) sum_index = sympy.symbols(self._loop_index) body_integrals = self.body.integral body_integrals = { c: body_integrals[c].sympified_expression.subs( {loop_index: self._loop_range.start.sympified_expression + sum_index*step_size} ) for c in body_integrals } # number of sum contributions step_count = sympy.ceiling((self._loop_range.stop.sympified_expression-self._loop_range.start.sympified_expression) / step_size) sum_start = 0 sum_stop = sum_start + (sympy.functions.Max(step_count, 1) - 1) for c in body_integrals: channel_integral_expr = sympy.Sum(body_integrals[c], (sum_index, sum_start, sum_stop)) body_integrals[c] = ExpressionScalar(channel_integral_expr) return body_integrals
Example #3
Source File: latex.py From Computable with MIT License | 5 votes |
def _needs_mul_brackets(self, expr, last=False): """ Returns True if the expression needs to be wrapped in brackets when printed as part of a Mul, False otherwise. This is True for Add, but also for some container objects that would not need brackets when appearing last in a Mul, e.g. an Integral. ``last=True`` specifies that this expr is the last to appear in a Mul. """ from sympy import Integral, Piecewise, Product, Sum return expr.is_Add or (not last and any([expr.has(x) for x in (Integral, Piecewise, Product, Sum)]))
Example #4
Source File: iteration.py From pixyz with MIT License | 5 votes |
def _symbol(self): # TODO: naive implementation dummy_loss = sympy.Symbol("dummy_loss") if self.max_iter: max_iter = self.max_iter else: max_iter = sympy.Symbol(sympy.latex(self.timpstep_symbol) + "_{max}") _symbol = sympy.Sum(dummy_loss, (self.timpstep_symbol, 1, max_iter)) _symbol = _symbol.subs({dummy_loss: self.step_loss._symbol}) return _symbol
Example #5
Source File: process_latex.py From latex2sympy with MIT License | 5 votes |
def handle_sum_or_prod(func, name): val = convert_mp(func.mp()) iter_var = convert_expr(func.subeq().equality().expr(0)) start = convert_expr(func.subeq().equality().expr(1)) if func.supexpr().expr(): # ^{expr} end = convert_expr(func.supexpr().expr()) else: # ^atom end = convert_atom(func.supexpr().atom()) if name == "summation": return sympy.Sum(val, (iter_var, start, end)) elif name == "product": return sympy.Product(val, (iter_var, start, end))
Example #6
Source File: pretty.py From Computable with MIT License | 4 votes |
def _print_Mul(self, product): a = [] # items in the numerator b = [] # items that are in the denominator (if any) if self.order not in ('old', 'none'): args = product.as_ordered_factors() else: args = product.args # Gather terms for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: b.append(C.Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append( C.Rational(item.p) ) if item.q != 1: b.append( C.Rational(item.q) ) else: a.append(item) from sympy import Integral, Piecewise, Product, Sum # Convert to pretty forms. Add parens to Add instances if there # is more than one term in the numer/denom for i in xrange(0, len(a)): if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and isinstance(a[i], (Integral, Piecewise, Product, Sum))): a[i] = prettyForm(*self._print(a[i]).parens()) else: a[i] = self._print(a[i]) for i in xrange(0, len(b)): if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and isinstance(b[i], (Integral, Piecewise, Product, Sum))): b[i] = prettyForm(*self._print(b[i]).parens()) else: b[i] = self._print(b[i]) # Construct a pretty form if len(b) == 0: return prettyForm.__mul__(*a) else: if len(a) == 0: a.append( self._print(S.One) ) return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) # A helper function for _print_Pow to print x**(1/n)
Example #7
Source File: operatorordering.py From sympsi with BSD 3-Clause "New" or "Revised" License | 4 votes |
def normal_ordered_form(expr, independent=False, recursive_limit=10, _recursive_depth=0): """Write an expression with bosonic or fermionic operators on normal ordered form, where each term is normally ordered. Note that this normal ordered form is equivalent to the original expression. Parameters ========== expr : expression The expression write on normal ordered form. recursive_limit : int (default 10) The number of allowed recursive applications of the function. Examples ======== >>> from sympsi import Dagger >>> from sympsi.boson import BosonOp >>> from sympsi.operatorordering import normal_ordered_form >>> a = BosonOp("a") >>> normal_ordered_form(a * Dagger(a)) 1 + Dagger(a)*a """ if _recursive_depth > recursive_limit: warnings.warn("Too many recursions, aborting") return expr if isinstance(expr, Add): return _normal_ordered_form_terms(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) elif isinstance(expr, Mul): return _normal_ordered_form_factor(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) elif isinstance(expr, Expectation): return Expectation(normal_ordered_form(expr.expression), expr.is_normal_order) elif isinstance(expr, (Sum, Integral)): nargs = [normal_ordered_form(expr.function, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent)] for lim in expr.limits: nargs.append(lim) return type(expr)(*nargs) else: return expr