Python tensorflow.python.ops.random_ops.truncated_normal() Examples
The following are 21
code examples of tensorflow.python.ops.random_ops.truncated_normal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.random_ops
, or try the search function
.
Example #1
Source File: init_ops.py From lambda-packs with MIT License | 6 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype scale = self.scale scale_shape = shape if partition_info is not None: scale_shape = partition_info.full_shape fan_in, fan_out = _compute_fans(scale_shape) if self.mode == "fan_in": scale /= max(1., fan_in) elif self.mode == "fan_out": scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == "normal": stddev = math.sqrt(scale) return random_ops.truncated_normal(shape, 0.0, stddev, dtype, seed=self.seed) else: limit = math.sqrt(3.0 * scale) return random_ops.random_uniform(shape, -limit, limit, dtype, seed=self.seed)
Example #2
Source File: init_ops.py From keras-lambda with MIT License | 6 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype scale = self.scale scale_shape = shape if partition_info is not None: scale_shape = partition_info.full_shape fan_in, fan_out = _compute_fans(scale_shape) if self.mode == "fan_in": scale /= max(1., fan_in) elif self.mode == "fan_out": scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == "normal": stddev = math.sqrt(scale) return random_ops.truncated_normal(shape, 0.0, stddev, dtype, seed=self.seed) else: limit = math.sqrt(3.0 * scale) return random_ops.random_uniform(shape, -limit, limit, dtype, seed=self.seed)
Example #3
Source File: init_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype scale = self.scale scale_shape = shape if partition_info is not None: scale_shape = partition_info.full_shape fan_in, fan_out = _compute_fans(scale_shape) if self.mode == "fan_in": scale /= max(1., fan_in) elif self.mode == "fan_out": scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == "normal": stddev = math.sqrt(scale) return random_ops.truncated_normal( shape, 0.0, stddev, dtype, seed=self.seed) else: limit = math.sqrt(3.0 * scale) return random_ops.random_uniform( shape, -limit, limit, dtype, seed=self.seed)
Example #4
Source File: init_ops.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype scale = self.scale scale_shape = shape if partition_info is not None: scale_shape = partition_info.full_shape fan_in, fan_out = _compute_fans(scale_shape) if self.mode == "fan_in": scale /= max(1., fan_in) elif self.mode == "fan_out": scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == "normal": stddev = math.sqrt(scale) return random_ops.truncated_normal(shape, 0.0, stddev, dtype, seed=self.seed) else: limit = math.sqrt(3.0 * scale) return random_ops.random_uniform(shape, -limit, limit, dtype, seed=self.seed)
Example #5
Source File: parameterized_truncated_normal_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def parameterized_vs_naive(shape, num_iters, use_gpu=False): np.random.seed(1618) # Make it reproducible. # No CSE/CF. optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0) config = tf.ConfigProto( graph_options=tf.GraphOptions(optimizer_options=optimizer_options)) with tf.Session(config=config) as sess: with tf.device("/cpu:0" if not use_gpu else None): param_op = tf.group(random_ops.parameterized_truncated_normal(shape)) naive_op = tf.group(random_ops.truncated_normal(shape)) # Burn-in to avoid session setup costs in the timing. sess.run(param_op) sess.run(param_op) param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters) sess.run(naive_op) sess.run(naive_op) naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters) return param_dt, naive_dt
Example #6
Source File: optimizers.py From tf-slim with Apache License 2.0 | 5 votes |
def _add_scaled_noise_to_gradients(grads_and_vars, gradient_noise_scale): """Adds scaled noise from a 0-mean normal distribution to gradients.""" gradients, variables = zip(*grads_and_vars) noisy_gradients = [] for gradient in gradients: if gradient is None: noisy_gradients.append(None) continue if isinstance(gradient, ops.IndexedSlices): gradient_shape = gradient.dense_shape else: gradient_shape = gradient.get_shape() noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale noisy_gradients.append(gradient + noise) return list(zip(noisy_gradients, variables))
Example #7
Source File: optimizers.py From keras-lambda with MIT License | 5 votes |
def _add_scaled_noise_to_gradients(grads_and_vars, gradient_noise_scale): """Adds scaled noise from a 0-mean normal distribution to gradients.""" gradients, variables = zip(*grads_and_vars) noisy_gradients = [] for gradient in gradients: if gradient is None: noisy_gradients.append(None) continue if isinstance(gradient, ops.IndexedSlices): gradient_shape = gradient.dense_shape else: gradient_shape = gradient.get_shape() noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale noisy_gradients.append(gradient + noise) return list(zip(noisy_gradients, variables))
Example #8
Source File: lstm1d.py From keras-lambda with MIT License | 5 votes |
def sequence_softmax(inputs, noutput, scope=None, name=None, linear_name=None): """Run a softmax layer over all the time steps of an input sequence. Args: inputs: (length, batch_size, depth) tensor noutput: output depth scope: optional scope name name: optional name for output tensor linear_name: name for linear (pre-softmax) output Returns: A tensor of size (length, batch_size, noutput). """ length, _, ninputs = _shape(inputs) inputs_u = array_ops.unstack(inputs) output_u = [] with variable_scope.variable_scope(scope, "SequenceSoftmax", [inputs]): initial_w = random_ops.truncated_normal([0 + ninputs, noutput], stddev=0.1) initial_b = constant_op.constant(0.1, shape=[noutput]) w = variables.model_variable("weights", initializer=initial_w) b = variables.model_variable("biases", initializer=initial_b) for i in xrange(length): with variable_scope.variable_scope(scope, "SequenceSoftmaxStep", [inputs_u[i]]): # TODO(tmb) consider using slim.fully_connected(..., # activation_fn=tf.nn.softmax) linear = nn_ops.xw_plus_b(inputs_u[i], w, b, name=linear_name) output = nn_ops.softmax(linear) output_u += [output] outputs = array_ops.stack(output_u, name=name) return outputs
Example #9
Source File: init_ops.py From keras-lambda with MIT License | 5 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.truncated_normal(shape, self.mean, self.stddev, dtype, seed=self.seed)
Example #10
Source File: init_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.truncated_normal( shape, self.mean, self.stddev, dtype, seed=self.seed)
Example #11
Source File: backend.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): """Returns a tensor with truncated random normal distribution of values. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than two standard deviations from the mean are dropped and re-picked. Arguments: shape: A tuple of integers, the shape of tensor to create. mean: Mean of the values. stddev: Standard deviation of the values. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.truncated_normal( shape, mean, stddev, dtype=dtype, seed=seed) # CTC # tensorflow has a native implemenation, but it uses sparse tensors # and therefore requires a wrapper for Keras. The functions below convert # dense to sparse tensors and also wraps up the beam search code that is # in tensorflow's CTC implementation
Example #12
Source File: optimizers.py From deep_image_model with Apache License 2.0 | 5 votes |
def _add_scaled_noise_to_gradients(grads_and_vars, gradient_noise_scale): """Adds scaled noise from a 0-mean normal distribution to gradients.""" gradients, variables = zip(*grads_and_vars) noisy_gradients = [] for gradient in gradients: if gradient is None: noisy_gradients.append(None) continue if isinstance(gradient, ops.IndexedSlices): gradient_shape = gradient.dense_shape else: gradient_shape = gradient.get_shape() noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale noisy_gradients.append(gradient + noise) return list(zip(noisy_gradients, variables))
Example #13
Source File: init_ops.py From deep_image_model with Apache License 2.0 | 5 votes |
def truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): """Returns an initializer that generates a truncated normal distribution. These values are similar to values from a `random_normal_initializer` except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters. Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. dtype: The data type. Only floating point types are supported. Returns: An initializer that generates tensors with a truncated normal distribution. Raises: ValueError: if `dtype` is not a floating point type. """ def _initializer(shape, dtype=_assert_float_dtype(dtype), partition_info=None): return random_ops.truncated_normal(shape, mean, stddev, dtype, seed=seed) return _initializer
Example #14
Source File: optimizers.py From tensornets with MIT License | 5 votes |
def _add_scaled_noise_to_gradients(grads_and_vars, gradient_noise_scale): """Adds scaled noise from a 0-mean normal distribution to gradients.""" gradients, variables = zip(*grads_and_vars) noisy_gradients = [] for gradient in gradients: if gradient is None: noisy_gradients.append(None) continue if isinstance(gradient, ops.IndexedSlices): gradient_shape = gradient.dense_shape else: gradient_shape = gradient.get_shape() noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale noisy_gradients.append(gradient + noise) return list(zip(noisy_gradients, variables))
Example #15
Source File: optimizers.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _add_scaled_noise_to_gradients(grads_and_vars, gradient_noise_scale): """Adds scaled noise from a 0-mean normal distribution to gradients.""" gradients, variables = zip(*grads_and_vars) noisy_gradients = [] for gradient in gradients: if gradient is None: noisy_gradients.append(None) continue if isinstance(gradient, ops.IndexedSlices): gradient_shape = gradient.dense_shape else: gradient_shape = gradient.get_shape() noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale noisy_gradients.append(gradient + noise) return list(zip(noisy_gradients, variables))
Example #16
Source File: lstm1d.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def sequence_softmax(inputs, noutput, scope=None, name=None, linear_name=None): """Run a softmax layer over all the time steps of an input sequence. Args: inputs: (length, batch_size, depth) tensor noutput: output depth scope: optional scope name name: optional name for output tensor linear_name: name for linear (pre-softmax) output Returns: A tensor of size (length, batch_size, noutput). """ length, _, ninputs = _shape(inputs) inputs_u = array_ops.unstack(inputs) output_u = [] with variable_scope.variable_scope(scope, "SequenceSoftmax", [inputs]): initial_w = random_ops.truncated_normal([0 + ninputs, noutput], stddev=0.1) initial_b = constant_op.constant(0.1, shape=[noutput]) w = variables.model_variable("weights", initializer=initial_w) b = variables.model_variable("biases", initializer=initial_b) for i in xrange(length): with variable_scope.variable_scope(scope, "SequenceSoftmaxStep", [inputs_u[i]]): # TODO(tmb) consider using slim.fully_connected(..., # activation_fn=tf.nn.softmax) linear = nn_ops.xw_plus_b(inputs_u[i], w, b, name=linear_name) output = nn_ops.softmax(linear) output_u += [output] outputs = array_ops.stack(output_u, name=name) return outputs
Example #17
Source File: init_ops.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.truncated_normal(shape, self.mean, self.stddev, dtype, seed=self.seed)
Example #18
Source File: optimizers.py From lambda-packs with MIT License | 5 votes |
def _add_scaled_noise_to_gradients(grads_and_vars, gradient_noise_scale): """Adds scaled noise from a 0-mean normal distribution to gradients.""" gradients, variables = zip(*grads_and_vars) noisy_gradients = [] for gradient in gradients: if gradient is None: noisy_gradients.append(None) continue if isinstance(gradient, ops.IndexedSlices): gradient_shape = gradient.dense_shape else: gradient_shape = gradient.get_shape() noise = random_ops.truncated_normal(gradient_shape) * gradient_noise_scale noisy_gradients.append(gradient + noise) return list(zip(noisy_gradients, variables))
Example #19
Source File: lstm1d.py From lambda-packs with MIT License | 5 votes |
def sequence_softmax(inputs, noutput, scope=None, name=None, linear_name=None): """Run a softmax layer over all the time steps of an input sequence. Args: inputs: (length, batch_size, depth) tensor noutput: output depth scope: optional scope name name: optional name for output tensor linear_name: name for linear (pre-softmax) output Returns: A tensor of size (length, batch_size, noutput). """ length, _, ninputs = _shape(inputs) inputs_u = array_ops.unstack(inputs) output_u = [] with variable_scope.variable_scope(scope, "SequenceSoftmax", [inputs]): initial_w = random_ops.truncated_normal([0 + ninputs, noutput], stddev=0.1) initial_b = constant_op.constant(0.1, shape=[noutput]) w = variables.model_variable("weights", initializer=initial_w) b = variables.model_variable("biases", initializer=initial_b) for i in xrange(length): with variable_scope.variable_scope(scope, "SequenceSoftmaxStep", [inputs_u[i]]): # TODO(tmb) consider using slim.fully_connected(..., # activation_fn=tf.nn.softmax) linear = nn_ops.xw_plus_b(inputs_u[i], w, b, name=linear_name) output = nn_ops.softmax(linear) output_u += [output] outputs = array_ops.stack(output_u, name=name) return outputs
Example #20
Source File: backend.py From lambda-packs with MIT License | 5 votes |
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): """Returns a tensor with truncated random normal distribution of values. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than two standard deviations from the mean are dropped and re-picked. Arguments: shape: A tuple of integers, the shape of tensor to create. mean: Mean of the values. stddev: Standard deviation of the values. dtype: String, dtype of returned tensor. seed: Integer, random seed. Returns: A tensor. """ if dtype is None: dtype = floatx() if seed is None: seed = np.random.randint(10e6) return random_ops.truncated_normal( shape, mean, stddev, dtype=dtype, seed=seed) # CTC # tensorflow has a native implemenation, but it uses sparse tensors # and therefore requires a wrapper for Keras. The functions below convert # dense to sparse tensors and also wraps up the beam search code that is # in tensorflow's CTC implementation
Example #21
Source File: init_ops.py From lambda-packs with MIT License | 5 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.truncated_normal(shape, self.mean, self.stddev, dtype, seed=self.seed)