Python torchvision.transforms.functional.adjust_gamma() Examples
The following are 8
code examples of torchvision.transforms.functional.adjust_gamma().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms.functional
, or try the search function
.
Example #1
Source File: cvfunctional.py From opencv_transforms_torchvision with MIT License | 6 votes |
def cv_transform(img): # img = resize(img, size=(100, 300)) # img = to_tensor(img) # img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant') # img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric') # img = crop(img, -40, -20, 1000, 1000) # img = center_crop(img, (310, 300)) # img = resized_crop(img, -10.3, -20, 330, 220, (500, 500)) # img = hflip(img) # img = vflip(img) # tl, tr, bl, br, center = five_crop(img, 100) # img = adjust_brightness(img, 2.1) # img = adjust_contrast(img, 1.5) # img = adjust_saturation(img, 2.3) # img = adjust_hue(img, 0.5) # img = adjust_gamma(img, gamma=3, gain=0.1) # img = rotate(img, 10, resample='BILINEAR', expand=True, center=None) # img = to_grayscale(img, 3) # img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0)) # img = gaussion_noise(img) # img = poisson_noise(img) img = salt_and_pepper(img) return to_tensor(img)
Example #2
Source File: cvfunctional.py From opencv_transforms_torchvision with MIT License | 6 votes |
def pil_transform(img): # img = functional.resize(img, size=(100, 300)) # img = functional.to_tensor(img) # img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant') # img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric') # img = functional.crop(img, -40, -20, 1000, 1000) # img = functional.center_crop(img, (310, 300)) # img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500)) # img = functional.hflip(img) # img = functional.vflip(img) # tl, tr, bl, br, center = functional.five_crop(img, 100) # img = functional.adjust_brightness(img, 2.1) # img = functional.adjust_contrast(img, 1.5) # img = functional.adjust_saturation(img, 2.3) # img = functional.adjust_hue(img, 0.5) # img = functional.adjust_gamma(img, gamma=3, gain=0.1) # img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None) # img = functional.to_grayscale(img, 3) # img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0)) return functional.to_tensor(img)
Example #3
Source File: cvfunctional.py From opencv_transforms_torchvision with MIT License | 5 votes |
def adjust_gamma(img, gamma, gain=1): """Perform gamma correction on an image. Also known as Power Law Transform. Intensities in RGB mode are adjusted based on the following equation: I_out = 255 * gain * ((I_in / 255) ** gamma) See https://en.wikipedia.org/wiki/Gamma_correction for more details. Args: img (np.ndarray): CV Image to be adjusted. gamma (float): Non negative real number. gamma larger than 1 make the shadows darker, while gamma smaller than 1 make dark regions lighter. gain (float): The constant multiplier. """ if not _is_numpy_image(img): raise TypeError('img should be CV Image. Got {}'.format(type(img))) if gamma < 0: raise ValueError('Gamma should be a non-negative real number') im = img.astype(np.float32) im = 255. * gain * np.power(im / 255., gamma) im = im.clip(min=0., max=255.) return im.astype(img.dtype)
Example #4
Source File: representations.py From SharpNet with GNU General Public License v3.0 | 5 votes |
def gamma(self, gamma_ratio): self.data = TF.adjust_gamma(self.data, gamma_ratio, gain=1)
Example #5
Source File: augmentations.py From CAG_UDA with MIT License | 5 votes |
def __call__(self, img, mask): assert img.size == mask.size return tf.adjust_gamma(img, random.uniform(1, 1 + self.gamma)), mask
Example #6
Source File: augmentations.py From pytorch-semseg with MIT License | 5 votes |
def __call__(self, img, mask): assert img.size == mask.size return tf.adjust_gamma(img, random.uniform(1, 1 + self.gamma)), mask
Example #7
Source File: transforms.py From NWPU-Crowd-Sample-Code with MIT License | 5 votes |
def __call__(self, img): if random.random() < 0.5: gamma = random.uniform(self.gamma_range[0],self.gamma_range[1]) return TrF.adjust_gamma(img, gamma) else: return img # ===============================label tranforms============================
Example #8
Source File: benchmark.py From albumentations with MIT License | 5 votes |
def torchvision_transform(self, img): return torchvision.adjust_gamma(img, gamma=0.5)