Python torchvision.transforms.functional.normalize() Examples
The following are 30
code examples of torchvision.transforms.functional.normalize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms.functional
, or try the search function
.
Example #1
Source File: data_loader_stargan.py From adversarial-object-removal with MIT License | 6 votes |
def __getitem__(self, index): # Apply transforms to the image. image = torch.FloatTensor(self.nc,self.out_img_size, self.out_img_size).fill_(-1.) # Get the individual images. randbox = random.randrange(len(self.metadata['images'][index])) imglabel = np.zeros(10, dtype=np.int) boxlabel = np.zeros(10, dtype=np.int) for i,bb in enumerate(self.metadata['images'][index]): imid = random.randrange(self.num_data) bbox = [int(bc*self.out_img_size) for bc in bb] img, label = self.dataset[imid] scImg = FN.resize(img,(bbox[3],bbox[2])) image[:, bbox[1]:bbox[1]+bbox[3], bbox[0]:bbox[0]+bbox[2]] = FN.normalize(FN.to_tensor(scImg), mean=(0.5,)*self.nc, std=(0.5,)*self.nc) #imglabel[label] = 1 if i == randbox: outBox = FN.normalize(FN.to_tensor(FN.resize(scImg, (self.bbox_out_size, self.bbox_out_size))), mean=(0.5,)*self.nc, std=(0.5,)*self.nc) mask = torch.zeros(1,self.out_img_size,self.out_img_size) mask[0,bbox[1]:bbox[1]+bbox[3],bbox[0]:bbox[0]+bbox[2]] = 1. outbbox = bbox #boxlabel[label]=1 #return image[[0,0,0],::], torch.FloatTensor([1]), outBox[[0,0,0],::], torch.FloatTensor([1]), mask, torch.IntTensor(outbbox) return image, torch.FloatTensor([1]), outBox, torch.FloatTensor([1]), mask, torch.IntTensor(outbbox)
Example #2
Source File: __init__.py From FPN.pytorch1.0 with MIT License | 6 votes |
def base_transform_nimgs(images, size, mean, stds, seq_len=1): res_imgs = [] # print(images.shape) for i in range(seq_len): # img = Image.fromarray(images[i,:, :, :]) # img = img.resize((size, size), Image.BILINEAR) img = cv2.resize(images[i, :, :, :], (size, size)).astype(np.float32) #img = images[i, :, :, :].astype(np.float32) # img = np.asarray(img) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 res_imgs += [torch.from_numpy(img).permute(2, 0, 1)] # pdb.set_trace() # res_imgs = np.asarray(res_imgs) return [F.normalize(img_tensor, mean, stds) for img_tensor in res_imgs] # return res_imgs
Example #3
Source File: PILTransform.py From ext_portrait_segmentation with MIT License | 6 votes |
def __call__(self, rgb_img, label_img=None): label1 = label_img label2 = label_img if self.scale1 != 1: w, h = label_img.size label1 = label1.resize((w//self.scale1, h//self.scale1), Image.NEAREST) if self.scale2 != 1: w, h = label_img.size label2 = label2.resize((w//self.scale2, h//self.scale2), Image.NEAREST) rgb_img = F.to_tensor(rgb_img) # convert to tensor (values between 0 and 1) rgb_img = F.normalize(rgb_img, self.mean, self.std) # normalize the tensor label1 = torch.LongTensor(np.array(label1).astype(np.int64)) label2 = torch.LongTensor(np.array(label2).astype(np.int64)) return rgb_img, label1, label2
Example #4
Source File: cvfunctional.py From opencv_transforms_torchvision with MIT License | 6 votes |
def pil_transform(img): # img = functional.resize(img, size=(100, 300)) # img = functional.to_tensor(img) # img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant') # img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric') # img = functional.crop(img, -40, -20, 1000, 1000) # img = functional.center_crop(img, (310, 300)) # img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500)) # img = functional.hflip(img) # img = functional.vflip(img) # tl, tr, bl, br, center = functional.five_crop(img, 100) # img = functional.adjust_brightness(img, 2.1) # img = functional.adjust_contrast(img, 1.5) # img = functional.adjust_saturation(img, 2.3) # img = functional.adjust_hue(img, 0.5) # img = functional.adjust_gamma(img, gamma=3, gain=0.1) # img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None) # img = functional.to_grayscale(img, 3) # img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0)) return functional.to_tensor(img)
Example #5
Source File: cvfunctional.py From opencv_transforms_torchvision with MIT License | 6 votes |
def cv_transform(img): # img = resize(img, size=(100, 300)) # img = to_tensor(img) # img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant') # img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric') # img = crop(img, -40, -20, 1000, 1000) # img = center_crop(img, (310, 300)) # img = resized_crop(img, -10.3, -20, 330, 220, (500, 500)) # img = hflip(img) # img = vflip(img) # tl, tr, bl, br, center = five_crop(img, 100) # img = adjust_brightness(img, 2.1) # img = adjust_contrast(img, 1.5) # img = adjust_saturation(img, 2.3) # img = adjust_hue(img, 0.5) # img = adjust_gamma(img, gamma=3, gain=0.1) # img = rotate(img, 10, resample='BILINEAR', expand=True, center=None) # img = to_grayscale(img, 3) # img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0)) # img = gaussion_noise(img) # img = poisson_noise(img) img = salt_and_pepper(img) return to_tensor(img)
Example #6
Source File: cvfunctional.py From opencv_transforms_torchvision with MIT License | 6 votes |
def normalize(tensor, mean, std): """Normalize a tensor image with mean and standard deviation. See ``Normalize`` for more details. Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channely. Returns: Tensor: Normalized Tensor image. """ if _is_tensor_image(tensor): for t, m, s in zip(tensor, mean, std): t.sub_(m).div_(s) return tensor elif _is_numpy_image(tensor): return (tensor.astype(np.float32) - 255.0 * np.array(mean))/np.array(std) else: raise RuntimeError('Undefined type')
Example #7
Source File: preprocess.py From obman_train with GNU General Public License v3.0 | 6 votes |
def prepare_input(frame, flip_left_right=False, debug=False): # BGR to RGB and flip frame input_image = np.flip(frame, axis=2).copy() if flip_left_right: input_image = np.flip(input_image, axis=1).copy() # Concert to shape batch_size=1, rgb, h, w input_image = torch.Tensor(input_image.transpose(2, 0, 1)) # To debug what is actually fed to network if debug: plt.imshow(input_image.numpy().transpose(1, 2, 0) / 255) plt.show() input_image = func_transforms.normalize( input_image / 255, [0.5, 0.5, 0.5], [1, 1, 1] ).unsqueeze(0) # Equivalently # input_image_1 = input_image / 255 - 0.5 input_image = input_image.cuda() return input_image
Example #8
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] mean, std = input_data.mean(), input_data.std() input_data = F.normalize(input_data, [mean], [std]) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #9
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #10
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] mean, std = input_data.mean(), input_data.std() input_data = F.normalize(input_data, [mean], [std]) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #11
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #12
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #13
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #14
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #15
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] mean, std = input_data.mean(), input_data.std() input_data = F.normalize(input_data, [mean], [std]) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #16
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #17
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] mean, std = input_data.mean(), input_data.std() input_data = F.normalize(input_data, [mean], [std]) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #18
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #19
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] mean, std = input_data.mean(), input_data.std() input_data = F.normalize(input_data, [mean], [std]) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #20
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #21
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] mean, std = input_data.mean(), input_data.std() input_data = F.normalize(input_data, [mean], [std]) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #22
Source File: transforms.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def __call__(self, sample): input_data = sample['input'] input_data = F.normalize(input_data, self.mean, self.std) rdict = { 'input': input_data, } sample.update(rdict) return sample
Example #23
Source File: transforms.py From training with Apache License 2.0 | 5 votes |
def __call__(self, image, target): if self.to_bgr255: image = image[[2, 1, 0]] * 255 image = F.normalize(image, mean=self.mean, std=self.std) return image, target
Example #24
Source File: transforms.py From pytracking with GNU General Public License v3.0 | 5 votes |
def transform_image(self, image): return tvisf.normalize(image, self.mean, self.std, self.inplace)
Example #25
Source File: transforms.py From pytracking with GNU General Public License v3.0 | 5 votes |
def transform_image(self, image, brightness_factor): # handle numpy array image = torch.from_numpy(image.transpose((2, 0, 1))) # backward compatibility if self.normalize: return image.float().mul(brightness_factor/255.0).clamp(0.0, 1.0) else: return image.float().mul(brightness_factor).clamp(0.0, 255.0)
Example #26
Source File: transforms.py From pytracking with GNU General Public License v3.0 | 5 votes |
def __init__(self, brightness_jitter=0.0, normalize=True): super().__init__() self.brightness_jitter = brightness_jitter self.normalize = normalize
Example #27
Source File: video_transforms.py From pvse with MIT License | 5 votes |
def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized Tensor image. """ for i in range(tensor.size(0)): F.normalize(tensor[i], self.mean, self.std) return tensor
Example #28
Source File: transforms.py From retinamask with MIT License | 5 votes |
def __call__(self, image, target): if self.to_bgr255: image = image[[2, 1, 0]] * 255 image = F.normalize(image, mean=self.mean, std=self.std) return image, target
Example #29
Source File: video_transforms.py From Sound-of-Pixels with MIT License | 5 votes |
def __call__(self, frames): """ Args: frames: a list of Tensor image of size (C, H, W) to be normalized. Returns: a list of Tensor: a list of normalized Tensor images. """ out_frames = [] for frame in frames: out_frames.append(F.normalize(frame, self.mean, self.std)) return out_frames
Example #30
Source File: functional.py From dsb2018_topcoders with MIT License | 5 votes |
def img_to_tensor(im, normalize=None): tensor = torch.from_numpy(np.moveaxis(im / (255. if im.dtype == np.uint8 else 1), -1, 0).astype(np.float32)) if normalize is not None: return F.normalize(tensor, **normalize) return tensor