Python torchvision.transforms.functional.center_crop() Examples

The following are 30 code examples of torchvision.transforms.functional.center_crop(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torchvision.transforms.functional , or try the search function .
Example #1
Source File: transforms.py    From ChaLearn_liveness_challenge with MIT License 7 votes vote down vote up
def __call__(self, img_dict):
        keys = ['rgb', 'ir', 'depth']
        for k in keys:
            img = img_dict[k]
            w, h = img.size
            crop_h, crop_w = self.size
            if crop_w > w or crop_h > h:
                raise ValueError("Requested crop size {} is bigger than input size {}".format(self.size,
                                                                                              (h, w)))
            if self.crop_index == 0:
                img_dict[k] = F.center_crop(img, (crop_h, crop_w))
            elif self.crop_index == 1:
                img_dict[k] = img.crop((0, 0, crop_w, crop_h))
            elif self.crop_index == 2:
                img_dict[k] = img.crop((w - crop_w, 0, w, crop_h))
            elif self.crop_index == 3:
                img_dict[k] = img.crop((0, h - crop_h, crop_w, h))
            elif self.crop_index == 4:
                img_dict[k] = img.crop((w - crop_w, h - crop_h, w, h))
            else:
                raise ValueError("Requested crop index is not in range(5)")
        return img_dict 
Example #2
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #3
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #4
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #5
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #6
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #7
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #8
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #9
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #10
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #11
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #12
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #13
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #14
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #15
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #16
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #17
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #18
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #19
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #20
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #21
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #22
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #23
Source File: dataloader.py    From Tag2Pix with MIT License 6 votes vote down vote up
def __call__(self, img1, img2):
        img1 = tvF.resize(img1, self.size, interpolation=Image.LANCZOS)
        img2 = tvF.resize(img2, self.size, interpolation=Image.LANCZOS)
        if random.random() < 0.5:
            img1 = tvF.hflip(img1)
            img2 = tvF.hflip(img2)
        if random.random() < 0.5:
            rot = random.uniform(-10, 10)
            crop_ratio = rot_crop(rot)
            img1 = tvF.rotate(img1, rot, resample=Image.BILINEAR)
            img2 = tvF.rotate(img2, rot, resample=Image.BILINEAR)
            img1 = tvF.center_crop(img1, int(img1.size[0] * crop_ratio))
            img2 = tvF.center_crop(img2, int(img2.size[0] * crop_ratio))

        i, j, h, w = self.get_params(img1, self.scale, self.ratio)

        # return the image with the same transformation
        return (tvF.resized_crop(img1, i, j, h, w, self.size, self.interpolation),
                tvF.resized_crop(img2, i, j, h, w, self.size, self.interpolation)) 
Example #24
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #25
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #26
Source File: transforms.py    From medicaltorch with Apache License 2.0 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #27
Source File: transforms.py    From ChaLearn_liveness_challenge with MIT License 6 votes vote down vote up
def __call__(self, img_dict):
        keys = ['rgb', 'ir', 'depth']
        for k in keys:
            img = img_dict[k]
            w, h = img.size
            crop_h, crop_w = self.size
            if crop_w > w or crop_h > h:
                raise ValueError("Requested crop size {} is bigger than input size {}".format(self.size,
                                                                                              (h, w)))
            if self.crop_index == 0:
                img_dict[k] = F.center_crop(img, (crop_h, crop_w))
            elif self.crop_index == 1:
                img_dict[k] = img.crop((0, 0, crop_w, crop_h))
            elif self.crop_index == 2:
                img_dict[k] = img.crop((w - crop_w, 0, w, crop_h))
            elif self.crop_index == 3:
                img_dict[k] = img.crop((0, h - crop_h, crop_w, h))
            elif self.crop_index == 4:
                img_dict[k] = img.crop((w - crop_w, h - crop_h, w, h))
            else:
                raise ValueError("Requested crop index is not in range(5)")
        return img_dict 
Example #28
Source File: transforms.py    From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License 6 votes vote down vote up
def __call__(self, sample):
        rdict = {}
        input_data = sample['input']

        w, h = input_data.size
        th, tw = self.size
        fh = int(round((h - th) / 2.))
        fw = int(round((w - tw) / 2.))

        params = (fh, fw, w, h)
        self.propagate_params(sample, params)

        input_data = F.center_crop(input_data, self.size)
        rdict['input'] = input_data

        if self.labeled:
            gt_data = sample['gt']
            gt_metadata = sample['gt_metadata']
            gt_data = F.center_crop(gt_data, self.size)
            gt_metadata["__centercrop"] = (fh, fw, w, h)
            rdict['gt'] = gt_data


        sample.update(rdict)
        return sample 
Example #29
Source File: cvfunctional.py    From opencv_transforms_torchvision with MIT License 6 votes vote down vote up
def cv_transform(img):
    # img = resize(img, size=(100, 300))
    # img = to_tensor(img)
    # img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
    # img = crop(img, -40, -20, 1000, 1000)
    # img = center_crop(img, (310, 300))
    # img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = hflip(img)
    # img = vflip(img)
    # tl, tr, bl, br, center = five_crop(img, 100)
    # img = adjust_brightness(img, 2.1)
    # img = adjust_contrast(img, 1.5)
    # img = adjust_saturation(img, 2.3)
    # img = adjust_hue(img, 0.5)
    # img = adjust_gamma(img, gamma=3, gain=0.1)
    # img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
    # img = to_grayscale(img, 3)
    # img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
    # img = gaussion_noise(img)
    # img = poisson_noise(img)
    img = salt_and_pepper(img)
    return to_tensor(img) 
Example #30
Source File: cvfunctional.py    From opencv_transforms_torchvision with MIT License 6 votes vote down vote up
def pil_transform(img):
    # img = functional.resize(img, size=(100, 300))
    # img = functional.to_tensor(img)
    # img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
    # img = functional.crop(img, -40, -20, 1000, 1000)
    # img = functional.center_crop(img, (310, 300))
    # img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = functional.hflip(img)
    # img = functional.vflip(img)
    # tl, tr, bl, br, center = functional.five_crop(img, 100)
    # img = functional.adjust_brightness(img, 2.1)
    # img = functional.adjust_contrast(img, 1.5)
    # img = functional.adjust_saturation(img, 2.3)
    # img = functional.adjust_hue(img, 0.5)
    # img = functional.adjust_gamma(img, gamma=3, gain=0.1)
    # img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
    # img = functional.to_grayscale(img, 3)
    # img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))

    return functional.to_tensor(img)