Python mmcv.impad_to_multiple() Examples
The following are 30
code examples of mmcv.impad_to_multiple().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mmcv
, or try the search function
.
Example #1
Source File: transforms.py From AerialDetection with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #2
Source File: transforms.py From AugFPN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #3
Source File: transforms.py From CenterNet with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #4
Source File: transforms.py From hrnet with MIT License | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #5
Source File: transforms.py From mmaction with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #6
Source File: transforms.py From kaggle-imaterialist with MIT License | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #7
Source File: transforms.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #8
Source File: transforms.py From Cascade-RPN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #9
Source File: transforms.py From FoveaBox with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #10
Source File: transforms.py From Libra_R-CNN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #11
Source File: transforms.py From Reasoning-RCNN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #12
Source File: transforms.py From RDSNet with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #13
Source File: transforms.py From Grid-R-CNN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #14
Source File: transforms.py From kaggle-kuzushiji-recognition with MIT License | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #15
Source File: transforms.py From PolarMask with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape # img = img[np.newaxis,:,:] return img
Example #16
Source File: transforms.py From PolarMask with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True, interpolation='nearest') else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img[np.newaxis,:,:] return img
Example #17
Source File: transforms.py From mmdetection-annotated with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #18
Source File: transforms.py From mmdetection_with_SENet154 with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #19
Source File: transforms.py From GCNet with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #20
Source File: transforms.py From PolarMask with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #21
Source File: transforms.py From mmdetection-annotated with Apache License 2.0 | 5 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img
Example #22
Source File: test_geometric.py From mmcv with Apache License 2.0 | 5 votes |
def test_impad_to_multiple(self): img = np.random.rand(11, 14, 3).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 4) assert padded_img.shape == (12, 16, 3) img = np.random.rand(20, 12).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 5) assert padded_img.shape == (20, 15) img = np.random.rand(20, 12).astype(np.float32) padded_img = mmcv.impad_to_multiple(img, 2) assert padded_img.shape == (20, 12)
Example #23
Source File: transforms.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 5 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img
Example #24
Source File: transforms.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 5 votes |
def _pad_img(self, results): if self.size is not None: padded_img = mmcv.impad(results['img'], self.size) elif self.size_divisor is not None: padded_img = mmcv.impad_to_multiple( results['img'], self.size_divisor, pad_val=self.pad_val) results['img'] = padded_img results['pad_shape'] = padded_img.shape results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor
Example #25
Source File: transforms.py From kaggle-imaterialist with MIT License | 5 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img
Example #26
Source File: transforms.py From GCNet with Apache License 2.0 | 5 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img
Example #27
Source File: transforms.py From hrnet with MIT License | 5 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img
Example #28
Source File: transforms.py From AerialDetection with Apache License 2.0 | 5 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img
Example #29
Source File: transforms.py From CenterNet with Apache License 2.0 | 5 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img
Example #30
Source File: transforms.py From ttfnet with Apache License 2.0 | 5 votes |
def _pad_img(self, results): if self.size is not None: padded_img = mmcv.impad(results['img'], self.size) elif self.size_divisor is not None: padded_img = mmcv.impad_to_multiple( results['img'], self.size_divisor, pad_val=self.pad_val) results['img'] = padded_img results['pad_shape'] = padded_img.shape results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor