Python mmcv.imrescale() Examples
The following are 30
code examples of mmcv.imrescale().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mmcv
, or try the search function
.
Example #1
Source File: transforms.py From Cascade-RPN with Apache License 2.0 | 6 votes |
def _resize_masks(self, results): for key in results.get('mask_fields', []): if results[key] is None: continue if self.keep_ratio: masks = [ mmcv.imrescale( mask, results['scale_factor'], interpolation='nearest') for mask in results[key] ] else: mask_size = (results['img_shape'][1], results['img_shape'][0]) masks = [ mmcv.imresize(mask, mask_size, interpolation='nearest') for mask in results[key] ] results[key] = masks
Example #2
Source File: transforms.py From mmdetection-annotated with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #3
Source File: transforms.py From Libra_R-CNN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #4
Source File: transforms.py From hrnet with MIT License | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #5
Source File: transforms.py From mmdetection_with_SENet154 with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #6
Source File: transforms.py From mmaction with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #7
Source File: transforms.py From AugFPN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #8
Source File: transforms.py From ttfnet with Apache License 2.0 | 6 votes |
def __call__(self, results): if results['keep_ratio']: gt_seg = mmcv.imrescale( results['gt_semantic_seg'], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results['gt_semantic_seg'], results['scale'], interpolation='nearest') if results['flip']: gt_seg = mmcv.imflip(gt_seg) if gt_seg.shape != results['pad_shape']: gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2]) if self.scale_factor != 1: gt_seg = mmcv.imrescale( gt_seg, self.scale_factor, interpolation='nearest') results['gt_semantic_seg'] = gt_seg return results
Example #9
Source File: transforms.py From GCNet with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #10
Source File: transforms.py From Cascade-RPN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #11
Source File: transforms.py From FoveaBox with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #12
Source File: transforms.py From AerialDetection with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #13
Source File: transforms.py From ttfnet with Apache License 2.0 | 6 votes |
def _resize_masks(self, results): for key in results.get('mask_fields', []): if results[key] is None: continue if self.keep_ratio: masks = [ mmcv.imrescale( mask, results['scale_factor'], interpolation='nearest') for mask in results[key] ] else: mask_size = (results['img_shape'][1], results['img_shape'][0]) masks = [ mmcv.imresize(mask, mask_size, interpolation='nearest') for mask in results[key] ] results[key] = masks
Example #14
Source File: transforms.py From CenterNet with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #15
Source File: transforms.py From PolarMask with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #16
Source File: transforms.py From PolarMask with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True, interpolation='nearest') else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img[np.newaxis,:,:] return img
Example #17
Source File: transforms.py From PolarMask with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape # img = img[np.newaxis,:,:] return img
Example #18
Source File: transforms.py From IoU-Uniform-R-CNN with Apache License 2.0 | 6 votes |
def __call__(self, results): if results['keep_ratio']: gt_seg = mmcv.imrescale( results['gt_semantic_seg'], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results['gt_semantic_seg'], results['scale'], interpolation='nearest') if results['flip']: gt_seg = mmcv.imflip(gt_seg) if gt_seg.shape != results['pad_shape']: gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2]) if self.scale_factor != 1: gt_seg = mmcv.imrescale( gt_seg, self.scale_factor, interpolation='nearest') results['gt_semantic_seg'] = gt_seg return results
Example #19
Source File: transforms.py From IoU-Uniform-R-CNN with Apache License 2.0 | 6 votes |
def _resize_masks(self, results): for key in results.get('mask_fields', []): if results[key] is None: continue if self.keep_ratio: masks = [ mmcv.imrescale( mask, results['scale_factor'], interpolation='nearest') for mask in results[key] ] else: mask_size = (results['img_shape'][1], results['img_shape'][0]) masks = [ mmcv.imresize(mask, mask_size, interpolation='nearest') for mask in results[key] ] results[key] = masks
Example #20
Source File: transforms.py From kaggle-kuzushiji-recognition with MIT License | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #21
Source File: transforms.py From kaggle-imaterialist with MIT License | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #22
Source File: transforms.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 6 votes |
def _resize_masks(self, results): for key in results.get('mask_fields', []): if results[key] is None: continue if self.keep_ratio: masks = [ mmcv.imrescale( mask, results['scale_factor'], interpolation='nearest') for mask in results[key] ] else: mask_size = (results['img_shape'][1], results['img_shape'][0]) masks = [ mmcv.imresize(mask, mask_size, interpolation='nearest') for mask in results[key] ] results[key] = masks
Example #23
Source File: transforms.py From mmdetection with Apache License 2.0 | 6 votes |
def _resize_img(self, results): """Resize images with ``results['scale']``.""" for key in results.get('img_fields', ['img']): if self.keep_ratio: img, scale_factor = mmcv.imrescale( results[key], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results[key].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results[key], results['scale'], return_scale=True) results[key] = img scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img_shape'] = img.shape # in case that there is no padding results['pad_shape'] = img.shape results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio
Example #24
Source File: transforms.py From kaggle-kuzushiji-recognition with MIT License | 6 votes |
def _resize_masks(self, results): for key in results.get('mask_fields', []): if results[key] is None: continue if self.keep_ratio: masks = [ mmcv.imrescale( mask, results['scale_factor'], interpolation='nearest') for mask in results[key] ] else: mask_size = (results['img_shape'][1], results['img_shape'][0]) masks = [ mmcv.imresize(mask, mask_size, interpolation='nearest') for mask in results[key] ] results[key] = masks
Example #25
Source File: transforms.py From Grid-R-CNN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #26
Source File: transforms.py From RDSNet with Apache License 2.0 | 6 votes |
def _resize_masks(self, results): for key in results.get('mask_fields', []): if results[key] is None: continue if self.keep_ratio: masks = [ mmcv.imrescale( mask, results['scale_factor'], interpolation='nearest') for mask in results[key] ] else: mask_size = (results['img_shape'][1], results['img_shape'][0]) masks = [ mmcv.imresize(mask, mask_size, interpolation='nearest') for mask in results[key] ] results[key] = masks
Example #27
Source File: transforms.py From RDSNet with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #28
Source File: transforms.py From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #29
Source File: transforms.py From Reasoning-RCNN with Apache License 2.0 | 6 votes |
def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor
Example #30
Source File: transforms.py From IoU-Uniform-R-CNN with Apache License 2.0 | 5 votes |
def _resize_img(self, results): if self.keep_ratio: img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio