Python mmcv.imresize() Examples

The following are 30 code examples of mmcv.imresize(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mmcv , or try the search function .
Example #1
Source File: transforms.py    From IoU-Uniform-R-CNN with Apache License 2.0 6 votes vote down vote up
def _resize_masks(self, results):
        for key in results.get('mask_fields', []):
            if results[key] is None:
                continue
            if self.keep_ratio:
                masks = [
                    mmcv.imrescale(
                        mask, results['scale_factor'], interpolation='nearest')
                    for mask in results[key]
                ]
            else:
                mask_size = (results['img_shape'][1], results['img_shape'][0])
                masks = [
                    mmcv.imresize(mask, mask_size, interpolation='nearest')
                    for mask in results[key]
                ]
            results[key] = masks 
Example #2
Source File: structures.py    From mmdetection with Apache License 2.0 6 votes vote down vote up
def crop_and_resize(self,
                        bboxes,
                        out_shape,
                        inds,
                        device,
                        interpolation='bilinear'):
        """Crop and resize masks by the given bboxes.

        This function is mainly used in mask targets computation.
        It firstly align mask to bboxes by assigned_inds, then crop mask by the
        assigned bbox and resize to the size of (mask_h, mask_w)

        Args:
            bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4)
            out_shape (tuple[int]): Target (h, w) of resized mask
            inds (ndarray): Indexes to assign masks to each bbox
            device (str): Device of bboxes
            interpolation (str): See `mmcv.imresize`

        Return:
            BaseInstanceMasks: the cropped and resized masks.
        """
        pass 
Example #3
Source File: test_geometric.py    From mmcv with Apache License 2.0 6 votes vote down vote up
def test_imresize(self):
        resized_img = mmcv.imresize(self.img, (1000, 600))
        assert resized_img.shape == (600, 1000, 3)
        resized_img, w_scale, h_scale = mmcv.imresize(self.img, (1000, 600),
                                                      True)
        assert (resized_img.shape == (600, 1000, 3) and w_scale == 2.5
                and h_scale == 2.0)
        resized_img_dst = np.empty((600, 1000, 3), dtype=self.img.dtype)
        resized_img = mmcv.imresize(self.img, (1000, 600), out=resized_img_dst)
        assert id(resized_img_dst) == id(resized_img)
        assert_array_equal(resized_img_dst,
                           mmcv.imresize(self.img, (1000, 600)))
        for mode in ['nearest', 'bilinear', 'bicubic', 'area', 'lanczos']:
            resized_img = mmcv.imresize(
                self.img, (1000, 600), interpolation=mode)
            assert resized_img.shape == (600, 1000, 3) 
Example #4
Source File: transforms.py    From mmdetection_with_SENet154 with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array(
                [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #5
Source File: mask_target.py    From AerialDetection with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = cfg.mask_size
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            # import pdb
            # pdb.set_trace()
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   (mask_size, mask_size))
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, mask_size, mask_size))
    return mask_targets 
Example #6
Source File: transforms.py    From AerialDetection with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array(
                [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #7
Source File: mask_target.py    From PolarMask with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = _pair(cfg.mask_size)
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            # mask_size (h, w) to (w, h)
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   mask_size[::-1])
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
    return mask_targets 
Example #8
Source File: transforms.py    From kaggle-kuzushiji-recognition with MIT License 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #9
Source File: transforms.py    From kaggle-kuzushiji-recognition with MIT License 6 votes vote down vote up
def __call__(self, results):
        if results['keep_ratio']:
            gt_seg = mmcv.imrescale(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        else:
            gt_seg = mmcv.imresize(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        if results['flip']:
            gt_seg = mmcv.imflip(gt_seg)
        if gt_seg.shape != results['pad_shape']:
            gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2])
        if self.scale_factor != 1:
            gt_seg = mmcv.imrescale(
                gt_seg, self.scale_factor, interpolation='nearest')
        results['gt_semantic_seg'] = gt_seg
        return results 
Example #10
Source File: mask_target.py    From kaggle-kuzushiji-recognition with MIT License 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = _pair(cfg.mask_size)
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            # mask_size (h, w) to (w, h)
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   mask_size[::-1])
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
    return mask_targets 
Example #11
Source File: transforms.py    From Grid-R-CNN with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array(
                [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #12
Source File: mask_target.py    From Grid-R-CNN with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = cfg.mask_size
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   (mask_size, mask_size))
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, mask_size, mask_size))
    return mask_targets 
Example #13
Source File: transforms.py    From RDSNet with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #14
Source File: transforms.py    From RDSNet with Apache License 2.0 6 votes vote down vote up
def __call__(self, results):
        if results['keep_ratio']:
            gt_seg = mmcv.imrescale(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        else:
            gt_seg = mmcv.imresize(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        if results['flip']:
            gt_seg = mmcv.imflip(gt_seg)
        if gt_seg.shape != results['pad_shape']:
            gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2])
        if self.scale_factor != 1:
            gt_seg = mmcv.imrescale(
                gt_seg, self.scale_factor, interpolation='nearest')
        results['gt_semantic_seg'] = gt_seg
        return results 
Example #15
Source File: mask_target.py    From RDSNet with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = _pair(cfg.mask_size)
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            # mask_size (h, w) to (w, h)
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   mask_size[::-1])
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
    return mask_targets 
Example #16
Source File: transforms.py    From mmdetection with Apache License 2.0 6 votes vote down vote up
def _resize_img(self, results):
        """Resize images with ``results['scale']``."""
        for key in results.get('img_fields', ['img']):
            if self.keep_ratio:
                img, scale_factor = mmcv.imrescale(
                    results[key], results['scale'], return_scale=True)
                # the w_scale and h_scale has minor difference
                # a real fix should be done in the mmcv.imrescale in the future
                new_h, new_w = img.shape[:2]
                h, w = results[key].shape[:2]
                w_scale = new_w / w
                h_scale = new_h / h
            else:
                img, w_scale, h_scale = mmcv.imresize(
                    results[key], results['scale'], return_scale=True)
            results[key] = img

            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
            results['img_shape'] = img.shape
            # in case that there is no padding
            results['pad_shape'] = img.shape
            results['scale_factor'] = scale_factor
            results['keep_ratio'] = self.keep_ratio 
Example #17
Source File: transforms.py    From IoU-Uniform-R-CNN with Apache License 2.0 6 votes vote down vote up
def __call__(self, results):
        if results['keep_ratio']:
            gt_seg = mmcv.imrescale(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        else:
            gt_seg = mmcv.imresize(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        if results['flip']:
            gt_seg = mmcv.imflip(gt_seg)
        if gt_seg.shape != results['pad_shape']:
            gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2])
        if self.scale_factor != 1:
            gt_seg = mmcv.imrescale(
                gt_seg, self.scale_factor, interpolation='nearest')
        results['gt_semantic_seg'] = gt_seg
        return results 
Example #18
Source File: transforms.py    From Reasoning-RCNN with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #19
Source File: mask_target.py    From Reasoning-RCNN with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = cfg.mask_size
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   (mask_size, mask_size))
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, mask_size, mask_size))
    return mask_targets 
Example #20
Source File: transforms.py    From Libra_R-CNN with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array(
                [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #21
Source File: mask_target.py    From Libra_R-CNN with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = cfg.mask_size
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   (mask_size, mask_size))
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, mask_size, mask_size))
    return mask_targets 
Example #22
Source File: transforms.py    From FoveaBox with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #23
Source File: mask_target.py    From FoveaBox with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = _pair(cfg.mask_size)
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            # mask_size (h, w) to (w, h)
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   mask_size[::-1])
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
    return mask_targets 
Example #24
Source File: transforms.py    From Cascade-RPN with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #25
Source File: transforms.py    From Cascade-RPN with Apache License 2.0 6 votes vote down vote up
def __call__(self, results):
        if results['keep_ratio']:
            gt_seg = mmcv.imrescale(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        else:
            gt_seg = mmcv.imresize(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        if results['flip']:
            gt_seg = mmcv.imflip(gt_seg)
        if gt_seg.shape != results['pad_shape']:
            gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2])
        if self.scale_factor != 1:
            gt_seg = mmcv.imrescale(
                gt_seg, self.scale_factor, interpolation='nearest')
        results['gt_semantic_seg'] = gt_seg
        return results 
Example #26
Source File: mask_target.py    From Cascade-RPN with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = _pair(cfg.mask_size)
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            # mask_size (h, w) to (w, h)
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   mask_size[::-1])
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
    return mask_targets 
Example #27
Source File: transforms.py    From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor 
Example #28
Source File: transforms.py    From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 6 votes vote down vote up
def __call__(self, results):
        if results['keep_ratio']:
            gt_seg = mmcv.imrescale(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        else:
            gt_seg = mmcv.imresize(
                results['gt_semantic_seg'],
                results['scale'],
                interpolation='nearest')
        if results['flip']:
            gt_seg = mmcv.imflip(gt_seg)
        if gt_seg.shape != results['pad_shape']:
            gt_seg = mmcv.impad(gt_seg, results['pad_shape'][:2])
        if self.scale_factor != 1:
            gt_seg = mmcv.imrescale(
                gt_seg, self.scale_factor, interpolation='nearest')
        results['gt_semantic_seg'] = gt_seg
        return results 
Example #29
Source File: mask_target.py    From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 6 votes vote down vote up
def mask_target_single(pos_proposals, pos_assigned_gt_inds, gt_masks, cfg):
    mask_size = _pair(cfg.mask_size)
    num_pos = pos_proposals.size(0)
    mask_targets = []
    if num_pos > 0:
        proposals_np = pos_proposals.cpu().numpy()
        pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
        for i in range(num_pos):
            gt_mask = gt_masks[pos_assigned_gt_inds[i]]
            bbox = proposals_np[i, :].astype(np.int32)
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1 + 1, 1)
            h = np.maximum(y2 - y1 + 1, 1)
            # mask is uint8 both before and after resizing
            # mask_size (h, w) to (w, h)
            target = mmcv.imresize(gt_mask[y1:y1 + h, x1:x1 + w],
                                   mask_size[::-1])
            mask_targets.append(target)
        mask_targets = torch.from_numpy(np.stack(mask_targets)).float().to(
            pos_proposals.device)
    else:
        mask_targets = pos_proposals.new_zeros((0, ) + mask_size)
    return mask_targets 
Example #30
Source File: transforms.py    From kaggle-imaterialist with MIT License 6 votes vote down vote up
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor