Python builtins.max() Examples

The following are 25 code examples of builtins.max(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module builtins , or try the search function .
Example #1
Source File: core.py    From mars with Apache License 2.0 6 votes vote down vote up
def _tree_reduction(cls, tensor, axis):
        op = tensor.op
        kw = getattr(op, '_get_op_kw')() or {}
        keepdims = op.keepdims
        combine_size = op.combine_size or options.combine_size
        if isinstance(combine_size, dict):
            combine_size = dict((ax, combine_size.get(ax)) for ax in axis)
        else:
            assert isinstance(combine_size, int)
            n = builtins.max(int(combine_size ** (1.0 / (len(axis) or 1))), 2)
            combine_size = dict((ax, n) for ax in axis)

        times = 1
        for i, n in enumerate(tensor.chunk_shape):
            if i in combine_size and combine_size[i] != 1:
                times = int(builtins.max(times, ceil(log(n, combine_size[i]))))

        for i in range(times - 1):
            [tensor] = cls._partial_reduction(tensor, axis, op.dtype, True, combine_size, OperandStage.combine)

        return cls._partial_reduction(tensor, axis, op.dtype, keepdims, combine_size, OperandStage.agg, kw) 
Example #2
Source File: tensor.py    From dgl with Apache License 2.0 6 votes vote down vote up
def pad_packed_tensor(input, lengths, value, l_min=None):
    old_shape = input.shape
    if isinstance(lengths, th.Tensor):
        max_len = as_scalar(lengths.max())
    else:
        max_len = builtins.max(lengths)

    if l_min is not None:
        max_len = builtins.max(max_len, l_min)

    batch_size = len(lengths)
    device = input.device
    x = input.new(batch_size * max_len, *old_shape[1:])
    x.fill_(value)
    index = []
    for i, l in enumerate(lengths):
        index.extend(range(i * max_len, i * max_len + l))
    index = th.tensor(index).to(device)
    return scatter_row(x, index, input).view(batch_size, max_len, *old_shape[1:]) 
Example #3
Source File: tensor.py    From dgl with Apache License 2.0 6 votes vote down vote up
def pad_packed_tensor(input, lengths, value, l_min=None):
    old_shape = input.shape
    if isinstance(lengths, tf.Tensor):
        max_len = as_scalar(lengths.max())
    else:
        max_len = builtins.max(lengths)

    if l_min is not None:
        max_len = builtins.max(max_len, l_min)

    batch_size = len(lengths)
    ndim = input.ndim
    tensor_list = []
    cum_row = 0
    pad_nparray = np.zeros((ndim, 2), dtype=np.int32)
    for l in lengths:
        t = input[cum_row:cum_row+l]
        pad_nparray[0, 1] = max_len - l
        t = tf.pad(t, tf.constant(pad_nparray),
                   mode='CONSTANT', constant_values=value)
        tensor_list.append(t)
        cum_row += l
    return tf.stack(tensor_list, axis=0) 
Example #4
Source File: cluster_monitor.py    From KubeOperator with Apache License 2.0 5 votes vote down vote up
def sync_node_time(cluster):
    hosts = C_Host.objects.filter(
        Q(project_id=cluster.id) & ~Q(name='localhost') & ~Q(name='127.0.0.1') & ~Q(name='::1'))
    data = []
    times = []
    result = {
        'success': True,
        'data': []
    }
    for host in hosts:
        ssh_config = SshConfig(host=host.ip, port=host.port, username=host.username, password=host.password,
                               private_key=None)

        ssh_client = SSHClient(ssh_config)
        res = ssh_client.run_cmd('date')
        gmt_date = res[0]
        GMT_FORMAT = '%a %b %d %H:%M:%S CST %Y'
        date = time.strptime(gmt_date, GMT_FORMAT)
        timeStamp = int(time.mktime(date))
        times.append(timeStamp)
        show_time = time.strftime('%Y-%m-%d %H:%M:%S', date)
        time_data = {
            'hostname': host.name,
            'date': show_time,
        }
        data.append(time_data)
    result['data'] = data
    max = builtins.max(times)
    min = builtins.min(times)
    # 如果最大值减最小值超过5分钟 则判断有错
    if (max - min) > 300000:
        result['success'] = False
    return result 
Example #5
Source File: new_min_max.py    From V1EngineeringInc-Docs with Creative Commons Attribution Share Alike 4.0 International 5 votes vote down vote up
def newmax(*args, **kwargs):
    return new_min_max(_builtin_max, *args, **kwargs) 
Example #6
Source File: new_min_max.py    From Tautulli with GNU General Public License v3.0 5 votes vote down vote up
def newmax(*args, **kwargs):
    return new_min_max(_builtin_max, *args, **kwargs) 
Example #7
Source File: fypp.py    From fypp with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def _get_smart_fold_pos(line, start, end):
        linelen = end - start
        ispace = line.rfind(' ', start, end)
        # The space we waste for smart folding should be max. 1/3rd of the line
        if ispace != -1 and ispace >= start + (2 * linelen) // 3:
            return ispace
        return end 
Example #8
Source File: fypp.py    From fypp with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def _postprocess_eval_line(self, evalline, fname, span):
        lines = evalline.split('\n')
        # If line ended on '\n', last element is ''. We remove it and
        # add the trailing newline later manually.
        trailing_newline = (lines[-1] == '')
        if trailing_newline:
            del lines[-1]
        lnum = linenumdir(span[0], fname) if self._linenums else ''
        clnum = lnum if self._contlinenums else ''
        linenumsep = '\n' + lnum
        clinenumsep = '\n' + clnum
        foldedlines = [self._foldline(line) for line in lines]
        outlines = [clinenumsep.join(lines) for lines in foldedlines]
        result = linenumsep.join(outlines)
        # Add missing trailing newline
        if trailing_newline:
            trailing = '\n'
            if self._linenums:
                # Last line was folded, but no linenums were generated for
                # the continuation lines -> current line position is not
                # in sync with the one calculated from the last line number
                unsync = (
                    len(foldedlines) and len(foldedlines[-1]) > 1
                    and not self._contlinenums)
                # Eval directive in source consists of more than one line
                multiline = span[1] - span[0] > 1
                if unsync or multiline:
                    # For inline eval directives span[0] == span[1]
                    # -> next line is span[0] + 1 and not span[1] as for
                    # line eval directives
                    nextline = max(span[1], span[0] + 1)
                    trailing += linenumdir(nextline, fname)
        else:
            trailing = ''
        return result + trailing 
Example #9
Source File: stats.py    From Turing with MIT License 5 votes vote down vote up
def max_index(args):
    return args.index(builtins.max(args)) 
Example #10
Source File: stats.py    From Turing with MIT License 5 votes vote down vote up
def max(args):
    return builtins.max(args) 
Example #11
Source File: sanity.py    From reframe with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def max(*args):
    '''Replacement for the built-in :func:`max() <python:max>` function.'''
    return builtins.max(*args) 
Example #12
Source File: max.py    From pyramda with MIT License 5 votes vote down vote up
def max(xs):
    return builtins.max(xs) 
Example #13
Source File: new_min_max.py    From addon with GNU General Public License v3.0 5 votes vote down vote up
def newmax(*args, **kwargs):
    return new_min_max(_builtin_max, *args, **kwargs) 
Example #14
Source File: _multimethods.py    From unumpy with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def _ptp_default(a, axis=None, out=None, keepdims=False):
    result = max(a, axis=axis, out=out, keepdims=keepdims)
    result -= min(a, axis=axis, out=None, keepdims=keepdims)
    return result 
Example #15
Source File: _multimethods.py    From unumpy with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def max(a, axis=None, out=None, keepdims=False):
    return (a, mark_non_coercible(out)) 
Example #16
Source File: _intbv.py    From myhdl with GNU Lesser General Public License v2.1 5 votes vote down vote up
def __init__(self, val=0, min=None, max=None, _nrbits=0):
        if _nrbits:
            self._min = 0
            self._max = 2**_nrbits
        else:
            self._min = min
            self._max = max
            if max is not None and min is not None:
                if min >= 0:
                    _nrbits = len(bin(max - 1))
                elif max <= 1:
                    _nrbits = len(bin(min))
                else:
                    # make sure there is a leading zero bit in positive numbers
                    _nrbits = builtins.max(len(bin(max - 1)) + 1, len(bin(min)))
        if isinstance(val, int):
            self._val = val
        elif isinstance(val, str):
            mval = val.replace('_', '')
            self._val = int(mval, 2)
            _nrbits = len(mval)
        elif isinstance(val, intbv):
            self._val = val._val
            self._min = val._min
            self._max = val._max
            _nrbits = val._nrbits
        else:
            raise TypeError("intbv constructor arg should be int or string")
        self._nrbits = _nrbits
        self._handleBounds()

    # support for the 'min' and 'max' attribute 
Example #17
Source File: tensor.py    From dgl with Apache License 2.0 5 votes vote down vote up
def max(input, dim):
    return tf.reduce_max(input, axis=dim) 
Example #18
Source File: tensor.py    From dgl with Apache License 2.0 5 votes vote down vote up
def reduce_max(input):
    return input.max() 
Example #19
Source File: tensor.py    From dgl with Apache License 2.0 5 votes vote down vote up
def max(input, dim):
    return nd.max(input, axis=dim) 
Example #20
Source File: tensor.py    From dgl with Apache License 2.0 5 votes vote down vote up
def reduce_max(input):
    return input.max() 
Example #21
Source File: tensor.py    From dgl with Apache License 2.0 5 votes vote down vote up
def max(input, dim):
    # NOTE: the second argmax array is not returned
    return th.max(input, dim=dim)[0] 
Example #22
Source File: _intbv.py    From myhdl with GNU Lesser General Public License v2.1 5 votes vote down vote up
def _hasFullRange(self):
        min, max = self._min, self._max
        if max <= 0:
            return False
        if min not in (0, -max):
            return False
        return max & max - 1 == 0

    # hash 
Example #23
Source File: _intbv.py    From myhdl with GNU Lesser General Public License v2.1 5 votes vote down vote up
def max(self):
        return self._max 
Example #24
Source File: _multimethods.py    From unumpy with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def _block_default(arrays):
    import unumpy as np

    rec = _Recurser(recurse_if=lambda x: type(x) is list)

    list_ndim = None
    any_empty = False
    for index, value, entering in rec.walk(arrays):
        if type(value) is tuple:
            # not strictly necessary, but saves us from:
            #  - more than one way to do things - no point treating tuples like
            #    lists
            #  - horribly confusing behaviour that results when tuples are
            #    treated like ndarray
            raise TypeError(
                "{} is a tuple. "
                "Only lists can be used to arrange blocks, and np.block does "
                "not allow implicit conversion from tuple to ndarray.".format(index)
            )
        if not entering:
            curr_depth = len(index)
        elif len(value) == 0:
            curr_depth = len(index) + 1
            any_empty = True
        else:
            continue

        if list_ndim is not None and list_ndim != curr_depth:
            raise ValueError(
                "List depths are mismatched. First element was at depth {}, "
                "but there is an element at depth {} ({})".format(
                    list_ndim, curr_depth, index
                )
            )
        list_ndim = curr_depth

        # convert all the arrays to ndarrays
        arrays = rec.map_reduce(arrays, f_map=asarray, f_reduce=list)

        elem_ndim = rec.map_reduce(
            arrays, f_map=lambda xi: np.ndim(xi), f_reduce=builtins.max
        )
        ndim = builtins.max(list_ndim, elem_ndim)
        first_axis = ndim - list_ndim
        arrays = rec.map_reduce(
            arrays, f_map=lambda xi: _atleast_xd(xi, ndim), f_reduce=list
        )

        return rec.map_reduce(
            arrays,
            f_reduce=lambda xs, axis: concatenate(list(xs), axis=axis - 1),
            f_kwargs=lambda axis: dict(axis=axis + 1),
            axis=first_axis,
        ) 
Example #25
Source File: _intbv.py    From myhdl with GNU Lesser General Public License v2.1 4 votes vote down vote up
def signed(self):
        ''' Return new intbv with the values interpreted as signed

        The intbv.signed() function will classify the value of the intbv
        instance either as signed or unsigned. If the value is classified
        as signed it will be returned unchanged as integer value. If the
        value is considered unsigned, the bits as specified by _nrbits
        will be considered as 2's complement number and returned. This
        feature will allow to create slices and have the sliced bits be
        considered a 2's complement number.

        The classification is based on the following possible combinations
        of the min and max value.

        ----+----+----+----+----+----+----+----
           -3   -2   -1    0    1    2    3
        1                   min  max
        2                        min  max
        3              min       max
        4              min            max
        5         min            max
        6         min       max
        7         min  max
        8   neither min nor max is set
        9   only max is set
        10  only min is set

        From the above cases, # 1 and 2 are considered unsigned and the
        signed() function will convert the value to a signed number.
        Decision about the sign will be done based on the msb. The msb is
        based on the _nrbits value.

        So the test will be if min >= 0 and _nrbits > 0. Then the instance
        is considered unsigned and the value is returned as 2's complement
        number.
        '''

        # value is considered unsigned
        if self.min is not None and self.min >= 0 and self._nrbits:

            # get 2's complement value of bits
            msb = self._nrbits - 1

            sign = ((self._val >> msb) & 0x1) > 0

            # mask off the bits msb-1:lsb, they are always positive
            mask = (1 << msb) - 1
            retVal = self._val & mask
            # if sign bit is set, subtract the value of the sign bit
            if sign:
                retVal -= 1 << msb

        else:  # value is returned just as is
            retVal = self._val

        if self._nrbits:
            M = 2**(self._nrbits - 1)
            return intbv(retVal, min=-M, max=M)
        else:
            return intbv(retVal)