Python tensorflow.keras.regularizers.serialize() Examples
The following are 21
code examples of tensorflow.keras.regularizers.serialize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.regularizers
, or try the search function
.
Example #1
Source File: FRN.py From TF.Keras-Commonly-used-models with Apache License 2.0 | 6 votes |
def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'beta_initializer': initializers.serialize(self.beta_initializer), 'tau_initializer': initializers.serialize(self.tau_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'tau_regularizer': regularizers.serialize(self.tau_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'tau_constraint': constraints.serialize(self.tau_constraint) } base_config = super(FRN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #2
Source File: group_convolution.py From Basic_CNNs_TensorFlow2 with MIT License | 6 votes |
def get_config(self): config = { "input_channels": self.input_channels, "output_channels": self.output_channels, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "output_padding": self.output_padding, "data_format": self.data_format, "dilation_rate": self.dilation_rate, "activation": activations.serialize(self.activation), "groups": self.groups, "use_bias": self.use_bias, "kernel_initializer": initializers.serialize(self.kernel_initializer), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "bias_constraint": constraints.serialize(self.bias_constraint) } base_config = super(GroupConv2DTranspose, self).get_config() return {**base_config, **config}
Example #3
Source File: groupnorm.py From bcnn with MIT License | 6 votes |
def get_config(self): config = { "groups": self.groups, "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": initializers.serialize(self.beta_initializer), "gamma_initializer": initializers.serialize(self.gamma_initializer), "beta_regularizer": regularizers.serialize(self.beta_regularizer), "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), "beta_constraint": constraints.serialize(self.beta_constraint), "gamma_constraint": constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #4
Source File: group_convolution.py From Basic_CNNs_TensorFlow2 with MIT License | 6 votes |
def get_config(self): config = { "input_channels": self.input_channels, "output_channels": self.output_channels, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "data_format": self.data_format, "dilation_rate": self.dilation_rate, "activation": activations.serialize(self.activation), "groups": self.groups, "use_bias": self.use_bias, "kernel_initializer": initializers.serialize(self.kernel_initializer), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "bias_constraint": constraints.serialize(self.bias_constraint) } base_config = super(GroupConv2D, self).get_config() return {**base_config, **config}
Example #5
Source File: group_norm.py From 3d-brain-tumor-segmentation with Apache License 2.0 | 6 votes |
def get_config(self): config = { 'groups': self.groups, 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #6
Source File: conv2d_mpo.py From TensorNetwork with Apache License 2.0 | 6 votes |
def get_config(self) -> dict: config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'num_nodes': self.num_nodes, 'bond_dim': self.bond_dim, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), } base_config = super(Conv2DMPO, self).get_config() config.update(base_config) return config
Example #7
Source File: conv_mod.py From StyleGAN2-Tensorflow-2.0 with MIT License | 6 votes |
def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'dilation_rate': self.dilation_rate, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'demod': self.demod } base_config = super(Conv2DMod, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #8
Source File: qconvolutional.py From qkeras with Apache License 2.0 | 6 votes |
def get_config(self): config = super(QDepthwiseConv2D, self).get_config() config.pop("filters", None) config.pop("kernel_initializer", None) config.pop("kernel_regularizer", None) config.pop("kernel_constraint", None) config["depth_multiplier"] = self.depth_multiplier config["depthwise_initializer"] = initializers.serialize( self.depthwise_initializer) config["depthwise_regularizer"] = regularizers.serialize( self.depthwise_regularizer) config["depthwise_constraint"] = constraints.serialize( self.depthwise_constraint) config["depthwise_quantizer"] = constraints.serialize( self.depthwise_quantizer_internal) config["bias_quantizer"] = constraints.serialize( self.bias_quantizer_internal) config["depthwise_range"] = self.depthwise_range config["bias_range"] = self.bias_range return config
Example #9
Source File: qconvolutional.py From qkeras with Apache License 2.0 | 5 votes |
def get_config(self): config = { "kernel_quantizer": constraints.serialize(self.kernel_quantizer_internal), "bias_quantizer": constraints.serialize(self.bias_quantizer_internal), "kernel_range": self.kernel_range, "bias_range": self.bias_range } base_config = super(QConv2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #10
Source File: custom_activation.py From Echo with MIT License | 5 votes |
def get_config(self): config = { "alpha_initializer": initializers.serialize(self.b_initializer), "alpha_regularizer": regularizers.serialize(self.b_regularizer), "alpha_constraint": constraints.serialize(self.b_constraint), "b_initializer": initializers.serialize(self.b_initializer), "b_regularizer": regularizers.serialize(self.b_regularizer), "b_constraint": constraints.serialize(self.b_constraint), "shared_axes": self.shared_axes, } base_config = super(APL, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #11
Source File: base.py From megnet with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_config(self) -> Dict: """ Part of keras layer interface, where the signature is converted into a dict Returns: configurational dictionary """ config = { 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize( self.kernel_initializer), 'bias_initializer': initializers.serialize( self.bias_initializer), 'kernel_regularizer': regularizers.serialize( self.kernel_regularizer), 'bias_regularizer': regularizers.serialize( self.bias_regularizer), 'activity_regularizer': regularizers.serialize( self.activity_regularizer), 'kernel_constraint': constraints.serialize( self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) # noqa
Example #12
Source File: set2set.py From megnet with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_config(self): config = {"T": self.T, "n_hidden": self.n_hidden, "activation": activations.serialize(self.activation), "activation_lstm": activations.serialize( self.activation_lstm), "recurrent_activation": activations.serialize( self.recurrent_activation), "kernel_initializer": initializers.serialize( self.kernel_initializer), "recurrent_initializer": initializers.serialize( self.recurrent_initializer), "bias_initializer": initializers.serialize( self.bias_initializer), "use_bias": self.use_bias, "unit_forget_bias": self.unit_forget_bias, "kernel_regularizer": regularizers.serialize( self.kernel_regularizer), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer), "bias_regularizer": regularizers.serialize( self.bias_regularizer), "kernel_constraint": constraints.serialize( self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint), "bias_constraint": constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #13
Source File: qnormalization.py From qkeras with Apache License 2.0 | 5 votes |
def get_config(self): config = { 'axis': self.axis, 'momentum': self.momentum, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_quantizer': constraints.serialize(self.beta_quantizer_internal), 'gamma_quantizer': constraints.serialize(self.gamma_quantizer_internal), 'mean_quantizer': constraints.serialize(self.mean_quantizer_internal), 'variance_quantizer': constraints.serialize(self.variance_quantizer_internal), 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint), 'beta_range': self.beta_range, 'gamma_range': self.gamma_range, } base_config = super(BatchNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #14
Source File: qconvolutional.py From qkeras with Apache License 2.0 | 5 votes |
def get_config(self): config = { "kernel_quantizer": constraints.serialize(self.kernel_quantizer_internal), "bias_quantizer": constraints.serialize(self.bias_quantizer_internal), "kernel_range": self.kernel_range, "bias_range": self.bias_range } base_config = super(QConv1D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #15
Source File: qlayers.py From qkeras with Apache License 2.0 | 5 votes |
def get_config(self): config = { "units": self.units, "activation": activations.serialize(self.activation), "use_bias": self.use_bias, "kernel_quantizer": constraints.serialize(self.kernel_quantizer_internal), "bias_quantizer": constraints.serialize(self.bias_quantizer_internal), "kernel_initializer": initializers.serialize(self.kernel_initializer), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "bias_constraint": constraints.serialize(self.bias_constraint), "kernel_range": self.kernel_range, "bias_range": self.bias_range } base_config = super(QDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #16
Source File: se_mobilenets.py From keras-squeeze-excite-network with MIT License | 5 votes |
def get_config(self): config = super(DepthwiseConv2D, self).get_config() config.pop('filters') config.pop('kernel_initializer') config.pop('kernel_regularizer') config.pop('kernel_constraint') config['depth_multiplier'] = self.depth_multiplier config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer) config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer) config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint) return config
Example #17
Source File: graph_conv.py From spektral with MIT License | 5 votes |
def get_config(self): config = { 'channels': self.channels, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #18
Source File: mincut_pool.py From spektral with MIT License | 5 votes |
def get_config(self): config = { 'k': self.k, 'mlp_hidden': self.mlp_hidden, 'mlp_activation': self.mlp_activation, 'return_mask': self.return_mask, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #19
Source File: diff_pool.py From spektral with MIT License | 5 votes |
def get_config(self): config = { 'k': self.k, 'channels': self.channels, 'return_mask': self.return_mask, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #20
Source File: topk_pool.py From spektral with MIT License | 5 votes |
def get_config(self): config = { 'ratio': self.ratio, 'return_mask': self.return_mask, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
Example #21
Source File: keras.py From spektral with MIT License | 5 votes |
def serialize_kwarg(key, attr): if key.endswith('_initializer'): return initializers.serialize(attr) if key.endswith('_regularizer'): return regularizers.serialize(attr) if key.endswith('_constraint'): return constraints.serialize(attr) if key == 'activation': return activations.serialize(attr) if key == 'use_bias': return attr