Python scipy.ndimage.morphology.binary_closing() Examples
The following are 3
code examples of scipy.ndimage.morphology.binary_closing().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.ndimage.morphology
, or try the search function
.
Example #1
Source File: morphologie.py From TextileDefectDetection with GNU Affero General Public License v3.0 | 6 votes |
def morphologie(img_name, target_dir, target_name): img = cv2.imread(img_name,cv2.IMREAD_GRAYSCALE) thresh_hor = 195 thresh_ver = 60 hor = cv2.threshold(img, thresh_hor, 255, cv2.THRESH_BINARY)[1] ver = 255-cv2.threshold(img, thresh_ver, 255, cv2.THRESH_BINARY)[1] mat = np.ones((5,5)) hor = binary_opening(hor, structure=mat, iterations=2).astype(np.uint8) * 255 #hor = binary_closing(hor, structure=mat, iterations=1).astype(np.uint8)*255 #mat = np.ones((3,3)) ver = binary_opening(ver, structure=mat, iterations=2).astype(np.uint8) * 255 #ver = binary_closing(ver, structure=mat, iterations=1).astype(np.uint8)*255 cv2.imwrite(os.path.join(target_dir, 'h' + target_name + '.png'), hor) cv2.imwrite(os.path.join(target_dir, 'v' + target_name + '.png'), ver)
Example #2
Source File: find_pictures.py From oldnyc with Apache License 2.0 | 5 votes |
def ShowBinaryArray(b, title=None): im = Image.fromarray(255*np.uint8(b)) im.show(im, title) #showBinaryArray(B) # this kills small features and introduces an 11px black border on every side #B = binary_closing(B, structure=np.ones((11,11))) #showBinaryArray(B) # #sys.exit(0)
Example #3
Source File: linegen.py From kraken with Apache License 2.0 | 4 votes |
def degrade_line(im, eta=0.0, alpha=1.5, beta=1.5, alpha_0=1.0, beta_0=1.0): """ Degrades a line image by adding noise. For parameter meanings consult [1]. Args: im (PIL.Image): Input image eta (float): alpha (float): beta (float): alpha_0 (float): beta_0 (float): Returns: PIL.Image in mode '1' """ logger.debug('Inverting and normalizing input image') im = pil2array(im) im = np.amax(im)-im im = im*1.0/np.amax(im) logger.debug('Calculating foreground distance transform') fg_dist = distance_transform_cdt(1-im, metric='taxicab') logger.debug('Calculating flip to white probability') fg_prob = alpha_0 * np.exp(-alpha * (fg_dist**2)) + eta fg_prob[im == 1] = 0 fg_flip = np.random.binomial(1, fg_prob) logger.debug('Calculating background distance transform') bg_dist = distance_transform_cdt(im, metric='taxicab') logger.debug('Calculating flip to black probability') bg_prob = beta_0 * np.exp(-beta * (bg_dist**2)) + eta bg_prob[im == 0] = 0 bg_flip = np.random.binomial(1, bg_prob) # flip logger.debug('Flipping') im -= bg_flip im += fg_flip logger.debug('Binary closing') sel = np.array([[1, 1], [1, 1]]) im = binary_closing(im, sel) logger.debug('Converting to image') return array2pil(255-im.astype('B')*255)