Python evaluation.Evaluation() Examples
The following are 9
code examples of evaluation.Evaluation().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
evaluation
, or try the search function
.
Example #1
Source File: evaluator.py From aristo-leaderboard with Apache License 2.0 | 6 votes |
def report(e: Evaluation, num_predictions: int, num_answers: int): i = e.inputs o = e.outputs c = e.conversions m = e.moves overall = e.overall print("=================================================") print("Question Avg. Precision Avg. Recall Avg. F1") print("-------------------------------------------------") print("Inputs %4.3f %4.3f %4.3f" % (i.precision, i.recall, i.F1())) print("Outputs %4.3f %4.3f %4.3f" % (o.precision, o.recall, o.F1())) print("Conversions %4.3f %4.3f %4.3f" % (c.precision, c.recall, c.F1())) print("Moves %4.3f %4.3f %4.3f" % (m.precision, m.recall, m.F1())) print("-------------------------------------------------") print("Overall Precision %4.3f " % overall.precision) print("Overall Recall %4.3f " % overall.recall) print("Overall F1 %4.3f " % overall.F1()) print("=================================================") print() print(f"Evaluated {num_predictions} predictions against {num_answers} answers.") print()
Example #2
Source File: demo.py From FashionAI_KeyPoint_Detection_Challenge_Keras with MIT License | 6 votes |
def demo(modelfile): # load network xEval = Evaluation('all', modelfile) # load images and run prediction testfile = os.path.join("../../data/test/", 'test.csv') xdf = pd.read_csv(testfile) xdf = xdf.sample(frac=1.0) for _index, _row in xdf.iterrows(): _image_id = _row['image_id'] _category = _row['image_category'] imageName = os.path.join("../../data/test", _image_id) print _image_id, _category dtkp = xEval.predict_kp_with_rotate(imageName, _category) visualize_keypoint(imageName, _category, dtkp)
Example #3
Source File: rationale.py From rcnn with Apache License 2.0 | 6 votes |
def evaluate(self, data, eval_func): res = [ ] for idts, labels in data: scores = eval_func(idts) #print scores.shape, len(labels) #print labels assert len(scores) == len(labels) ranks = (-scores).argsort() ranked_labels = labels[ranks] res.append(ranked_labels) e = Evaluation(res) MAP = e.MAP()*100 MRR = e.MRR()*100 P1 = e.Precision(1)*100 P5 = e.Precision(5)*100 return MAP, MRR, P1, P5
Example #4
Source File: eval_callback.py From FashionAI_KeyPoint_Detection_Challenge_Keras with MIT License | 5 votes |
def on_epoch_end(self, epoch, logs=None): modelName = os.path.join(self.foldPath, self.category+"_weights_"+str(epoch)+".hdf5") keras.models.save_model(self.model, modelName) print "Saving model to ", modelName print "Runing evaluation ........." xEval = Evaluation(self.category, None) xEval.init_from_model(self.model) start = time() neScore, categoryDict = xEval.eval(self.multiOut, details=True) end = time() print "Evaluation Done", str(neScore), " cost ", end - start, " seconds!" for key in categoryDict.keys(): scores = categoryDict[key] print key, ' score ', sum(scores)/len(scores) with open(self.valLog , 'a+') as xfile: xfile.write(modelName + ", Socre "+ str(neScore)+"\n") for key in categoryDict.keys(): scores = categoryDict[key] xfile.write(key + ": " + str(sum(scores)/len(scores)) + "\n") xfile.close()
Example #5
Source File: test.py From FashionAI_KeyPoint_Detection_Challenge_Keras with MIT License | 5 votes |
def main_test(savepath, modelpath, augmentFlag): valfile = os.path.join(modelpath, 'val.log') bestmodels = get_best_single_model(valfile) print bestmodels, augmentFlag xEval = Evaluation('all', bestmodels[0]) # load images and run prediction testfile = os.path.join("../../data/test/", 'test.csv') for category in ['skirt', 'blouse', 'trousers', 'outwear', 'dress']: xdict = dict() xdf = load_image_names(testfile, category) print len(xdf), " images to process ", category count = 0 for _index, _row in xdf.iterrows(): count += 1 if count%1000 == 0: print count, "images have been processed" _image_id = _row['image_id'] imageName = os.path.join("../../data/test", _image_id) if augmentFlag: dtkp = xEval.predict_kp_with_rotate(imageName, _row['image_category']) else: dtkp = xEval.predict_kp(imageName, _row['image_category'], multiOutput=True) xdict[_image_id] = dtkp savefile = os.path.join(savepath, category+'.pkl') with open(savefile, 'wb') as xfile: pickle.dump(xdict, xfile) print "prediction save to ", savefile
Example #6
Source File: main.py From rcnn with Apache License 2.0 | 5 votes |
def evaluate(self, data, eval_func): res = [ ] for idts, idbs, labels in data: scores = eval_func(idts, idbs) assert len(scores) == len(labels) ranks = (-scores).argsort() ranked_labels = labels[ranks] res.append(ranked_labels) e = Evaluation(res) MAP = e.MAP()*100 MRR = e.MRR()*100 P1 = e.Precision(1)*100 P5 = e.Precision(5)*100 return MAP, MRR, P1, P5
Example #7
Source File: main.py From rcnn with Apache License 2.0 | 5 votes |
def evaluate(self, data, eval_func): res = [ ] for t, b, labels in data: idts, idbs = myio.create_one_batch(t, b, self.padding_id) scores = eval_func(idts) #assert len(scores) == len(labels) ranks = (-scores).argsort() ranked_labels = labels[ranks] res.append(ranked_labels) e = Evaluation(res) MAP = e.MAP()*100 MRR = e.MRR()*100 P1 = e.Precision(1)*100 P5 = e.Precision(5)*100 return MAP, MRR, P1, P5
Example #8
Source File: test.py From blitznet with MIT License | 4 votes |
def main(argv=None): # pylint: disable=unused-argument assert args.ckpt > 0 or args.batch_eval assert args.detect or args.segment, "Either detect or segment should be True" if args.trunk == 'resnet50': net = ResNet depth = 50 if args.trunk == 'resnet101': net = ResNet depth = 101 if args.trunk == 'vgg16': net = VGG depth = 16 net = net(config=net_config, depth=depth, training=False) if args.dataset == 'voc07' or args.dataset == 'voc07+12': loader = VOCLoader('07', 'test') if args.dataset == 'voc12': loader = VOCLoader('12', 'val', segmentation=args.segment) if args.dataset == 'coco': loader = COCOLoader(args.split) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess: detector = Detector(sess, net, loader, net_config, no_gt=args.no_seg_gt) if args.dataset == 'coco': tester = COCOEval(detector, loader) else: tester = Evaluation(detector, loader, iou_thresh=args.voc_iou_thresh) if not args.batch_eval: detector.restore_from_ckpt(args.ckpt) tester.evaluate_network(args.ckpt) else: log.info('Evaluating %s' % args.run_name) ckpts_folder = CKPT_ROOT + args.run_name + '/' out_file = ckpts_folder + evaluation_logfile max_checked = get_last_eval(out_file) log.debug("Maximum checked ckpt is %i" % max_checked) with open(out_file, 'a') as f: start = max(args.min_ckpt, max_checked+1) ckpt_files = glob(ckpts_folder + '*.data*') folder_has_nums = np.array(list((map(filename2num, ckpt_files))), dtype='int') nums_available = sorted(folder_has_nums[folder_has_nums >= start]) nums_to_eval = [nums_available[-1]] for n in reversed(nums_available): if nums_to_eval[-1] - n >= args.step: nums_to_eval.append(n) nums_to_eval.reverse() for ckpt in nums_to_eval: log.info("Evaluation of ckpt %i" % ckpt) tester.reset() detector.restore_from_ckpt(ckpt) res = tester.evaluate_network(ckpt) f.write(res) f.flush()
Example #9
Source File: frcnn.py From incremental_detectors with BSD 3-Clause "New" or "Revised" License | 4 votes |
def eval_network(sess): net = Network(num_classes=args.num_classes+args.extend, distillation=False) _, _, remain = split_classes() loader = get_loader(False, remain) is_voc = loader.dataset == 'voc' if args.eval_ckpts != '': ckpts = args.eval_ckpts.split(',') else: ckpts = [args.ckpt] global_results = {cat: [] for cat in loader.categories} global_results[AVERAGE+" 1-10"] = [] global_results[AVERAGE+" 11-20"] = [] global_results[AVERAGE+" ALL"] = [] for ckpt in ckpts: if ckpt[-1].lower() == 'k': ckpt_num = int(ckpt[:-1])*1000 else: ckpt_num = int(ckpt) init_op, init_feed_dict = restore_ckpt(ckpt_num=ckpt_num) sess.run(init_op, feed_dict=init_feed_dict) log.info("Checkpoint {}".format(ckpt)) if is_voc: results = Evaluation(net, loader, ckpt_num, args.conf_thresh, args.nms_thresh).evaluate_network(args.eval_first_n) for cat in loader.categories: global_results[cat].append(results[cat] if cat in results else 0.0) # TODO add output formating, line after learnt cats old_classes = [results.get(k, 0) for k in loader.categories[:10]] new_classes = [results.get(k, 0) for k in loader.categories[10:]] all_classes = [results.get(k, 0) for k in loader.categories] global_results[AVERAGE+" 1-10"].append(np.mean(old_classes)) global_results[AVERAGE+" 11-20"].append(np.mean(new_classes)) global_results[AVERAGE+" ALL"].append(np.mean(all_classes)) headers = ['Category'] + [("mAP (%s, %i img)" % (ckpt, args.eval_first_n)) for ckpt in ckpts] table_src = [] for cat in loader.categories: table_src.append([cat] + global_results[cat]) table_src.append([AVERAGE+" 1-10", ] + global_results[AVERAGE+" 1-10"]) table_src.append([AVERAGE+" 11-20", ] + global_results[AVERAGE+" 11-20"]) table_src.append([AVERAGE+" ALL", ] + global_results[AVERAGE+" ALL"]) out = tabulate(table_src, headers=headers, floatfmt=".1f", tablefmt='orgtbl') with open("/home/lear/kshmelko/scratch/logs/results_voc/%s.pkl" % args.run_name, 'wb') as f: pickle.dump(global_results, f, pickle.HIGHEST_PROTOCOL) log.info("Summary table over %i checkpoints\nExperiment: %s\n%s", len(ckpts), args.run_name, out) else: results = COCOEval(net, loader, ckpt_num, args.conf_thresh, args.nms_thresh).evaluate_network(args.eval_first_n)