Python numpy.core.multiarray.dot() Examples
The following are 30
code examples of numpy.core.multiarray.dot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.core.multiarray
, or try the search function
.
Example #1
Source File: test_multiarray.py From ImageFusion with MIT License | 6 votes |
def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b))
Example #2
Source File: numeric.py From keras-lambda with MIT License | 6 votes |
def restoredot(): """ Restore `dot`, `vdot`, and `innerproduct` to the default non-BLAS implementations. Typically, the user will only need to call this when troubleshooting and installation problem, reproducing the conditions of a build without an accelerated BLAS, or when being very careful about benchmarking linear algebra operations. .. note:: Deprecated in Numpy 1.10 The cblas functions have been integrated into the multarray module and restoredot now longer does anything. It will be removed in Numpy 1.11.0. See Also -------- alterdot : `restoredot` undoes the effects of `alterdot`. """ # 2014-08-13, 1.10 warnings.warn("restoredot no longer does anything.", DeprecationWarning)
Example #3
Source File: test_multiarray.py From ImageFusion with MIT License | 6 votes |
def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r)
Example #4
Source File: test_multiarray.py From ImageFusion with MIT License | 6 votes |
def test_dot_override(self): class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b)
Example #5
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def restoredot(): """ Restore `dot`, `vdot`, and `innerproduct` to the default non-BLAS implementations. Typically, the user will only need to call this when troubleshooting and installation problem, reproducing the conditions of a build without an accelerated BLAS, or when being very careful about benchmarking linear algebra operations. .. note:: Deprecated in Numpy 1.10 The cblas functions have been integrated into the multarray module and restoredot now longer does anything. It will be removed in Numpy 1.11.0. See Also -------- alterdot : `restoredot` undoes the effects of `alterdot`. """ # 2014-08-13, 1.10 warnings.warn("restoredot no longer does anything.", DeprecationWarning)
Example #6
Source File: test_multiarray.py From Computable with MIT License | 6 votes |
def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b))
Example #7
Source File: test_multiarray.py From Computable with MIT License | 6 votes |
def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r)
Example #8
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_all(self): dims = [(), (1,), (1, 1)] for dim1 in dims: for dim2 in dims: arg1 = rand(*dim1) arg2 = rand(*dim2) c1 = dot(arg1, arg2) c2 = dot_(arg1, arg2) assert_(c1.shape == c2.shape) assert_almost_equal(c1, c2, decimal=self.N)
Example #9
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_vecscalar(self): b1 = rand(1, 1) b2 = rand(1, 8) c1 = dot(b1, b2) c2 = dot_(b1, b2) assert_almost_equal(c1, c2, decimal=self.N)
Example #10
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_columnvect2(self): b1 = ones((3, 1)).transpose() b2 = [6.2] c1 = dot(b2, b1) c2 = dot_(b2, b1) assert_almost_equal(c1, c2, decimal=self.N)
Example #11
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_columnvect1(self): b1 = ones((3, 1)) b2 = [5.3] c1 = dot(b1, b2) c2 = dot_(b1, b2) assert_almost_equal(c1, c2, decimal=self.N)
Example #12
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_vecvecinner(self): b1, b3 = self.b1, self.b3 c1 = dot(b3, b1) c2 = dot_(b3, b1) assert_almost_equal(c1, c2, decimal=self.N)
Example #13
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_vecvecouter(self): b1, b3 = self.b1, self.b3 c1 = dot(b1, b3) c2 = dot_(b1, b3) assert_almost_equal(c1, c2, decimal=self.N)
Example #14
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_vecmat2(self): b3, A = self.b3, self.A c1 = dot(b3, A.transpose()) c2 = dot_(b3, A.transpose()) assert_almost_equal(c1, c2, decimal=self.N)
Example #15
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_vecmat(self): A, b4 = self.A, self.b4 c1 = dot(b4, A) c2 = dot_(b4, A) assert_almost_equal(c1, c2, decimal=self.N)
Example #16
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_matvec2(self): A, b2 = self.A, self.b2 c1 = dot(A, b2) c2 = dot_(A, b2) assert_almost_equal(c1, c2, decimal=self.N)
Example #17
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_matvec(self): A, b1 = self.A, self.b1 c1 = dot(A, b1) c2 = dot_(A, b1) assert_almost_equal(c1, c2, decimal=self.N)
Example #18
Source File: test_numeric.py From ImageFusion with MIT License | 5 votes |
def test_matmat(self): A = self.A c1 = dot(A.transpose(), A) c2 = dot_(A.transpose(), A) assert_almost_equal(c1, c2, decimal=self.N)
Example #19
Source File: test_multiarray.py From ImageFusion with MIT License | 5 votes |
def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r)
Example #20
Source File: numeric.py From keras-lambda with MIT License | 5 votes |
def alterdot(): """ Change `dot`, `vdot`, and `inner` to use accelerated BLAS functions. Typically, as a user of Numpy, you do not explicitly call this function. If Numpy is built with an accelerated BLAS, this function is automatically called when Numpy is imported. When Numpy is built with an accelerated BLAS like ATLAS, these functions are replaced to make use of the faster implementations. The faster implementations only affect float32, float64, complex64, and complex128 arrays. Furthermore, the BLAS API only includes matrix-matrix, matrix-vector, and vector-vector products. Products of arrays with larger dimensionalities use the built in functions and are not accelerated. .. note:: Deprecated in Numpy 1.10 The cblas functions have been integrated into the multarray module and alterdot now longer does anything. It will be removed in Numpy 1.11.0. See Also -------- restoredot : `restoredot` undoes the effects of `alterdot`. """ # 2014-08-13, 1.10 warnings.warn("alterdot no longer does anything.", DeprecationWarning)
Example #21
Source File: test_multiarray.py From ImageFusion with MIT License | 5 votes |
def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d)
Example #22
Source File: test_multiarray.py From Computable with MIT License | 5 votes |
def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d)
Example #23
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def alterdot(): """ Change `dot`, `vdot`, and `inner` to use accelerated BLAS functions. Typically, as a user of Numpy, you do not explicitly call this function. If Numpy is built with an accelerated BLAS, this function is automatically called when Numpy is imported. When Numpy is built with an accelerated BLAS like ATLAS, these functions are replaced to make use of the faster implementations. The faster implementations only affect float32, float64, complex64, and complex128 arrays. Furthermore, the BLAS API only includes matrix-matrix, matrix-vector, and vector-vector products. Products of arrays with larger dimensionalities use the built in functions and are not accelerated. .. note:: Deprecated in Numpy 1.10 The cblas functions have been integrated into the multarray module and alterdot now longer does anything. It will be removed in Numpy 1.11.0. See Also -------- restoredot : `restoredot` undoes the effects of `alterdot`. """ # 2014-08-13, 1.10 warnings.warn("alterdot no longer does anything.", DeprecationWarning)
Example #24
Source File: test_numeric.py From Computable with MIT License | 5 votes |
def test_all(self): dims = [(), (1,), (1, 1)] for dim1 in dims: for dim2 in dims: arg1 = rand(*dim1) arg2 = rand(*dim2) c1 = dot(arg1, arg2) c2 = dot_(arg1, arg2) assert_(c1.shape == c2.shape) assert_almost_equal(c1, c2, decimal=self.N)
Example #25
Source File: test_numeric.py From Computable with MIT License | 5 votes |
def test_vecscalar2(self): b1 = rand(8, 1) b2 = rand(1, 1) c1 = dot(b1, b2) c2 = dot_(b1, b2) assert_almost_equal(c1, c2, decimal=self.N)
Example #26
Source File: test_numeric.py From Computable with MIT License | 5 votes |
def test_vecscalar(self): b1 = rand(1, 1) b2 = rand(1, 8) c1 = dot(b1, b2) c2 = dot_(b1, b2) assert_almost_equal(c1, c2, decimal=self.N)
Example #27
Source File: test_numeric.py From Computable with MIT License | 5 votes |
def test_columnvect2(self): b1 = ones((3, 1)).transpose() b2 = [6.2] c1 = dot(b2, b1) c2 = dot_(b2, b1) assert_almost_equal(c1, c2, decimal=self.N)
Example #28
Source File: test_numeric.py From Computable with MIT License | 5 votes |
def test_columnvect1(self): b1 = ones((3, 1)) b2 = [5.3] c1 = dot(b1, b2) c2 = dot_(b1, b2) assert_almost_equal(c1, c2, decimal=self.N)
Example #29
Source File: test_numeric.py From Computable with MIT License | 5 votes |
def test_vecvecouter(self): b1, b3 = self.b1, self.b3 c1 = dot(b1, b3) c2 = dot_(b1, b3) assert_almost_equal(c1, c2, decimal=self.N)
Example #30
Source File: test_numeric.py From Computable with MIT License | 5 votes |
def test_vecmat3(self): A, b4 = self.A, self.b4 c1 = dot(A.transpose(), b4) c2 = dot_(A.transpose(), b4) assert_almost_equal(c1, c2, decimal=self.N)