Python numpy.core.multiarray.dtype() Examples
The following are 30
code examples of numpy.core.multiarray.dtype().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.core.multiarray
, or try the search function
.
Example #1
Source File: _internal.py From Computable with MIT License | 6 votes |
def _getintp_ctype(): from .multiarray import dtype val = _getintp_ctype.cache if val is not None: return val char = dtype('p').char import ctypes if (char == 'i'): val = ctypes.c_int elif char == 'l': val = ctypes.c_long elif char == 'q': val = ctypes.c_longlong else: val = ctypes.c_long _getintp_ctype.cache = val return val
Example #2
Source File: _type_aliases.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #3
Source File: _methods.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _mean(a, axis=None, dtype=None, out=None, keepdims=False): arr = asanyarray(a) rcount = _count_reduce_items(arr, axis) # Make this warning show up first if rcount == 0: warnings.warn("Mean of empty slice.", RuntimeWarning) # Cast bool, unsigned int, and int to float64 by default if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)): dtype = mu.dtype('f8') ret = umr_sum(arr, axis, dtype, out, keepdims) if isinstance(ret, mu.ndarray): ret = um.true_divide( ret, rcount, out=ret, casting='unsafe', subok=False) elif hasattr(ret, 'dtype'): ret = ret.dtype.type(ret / rcount) else: ret = ret / rcount return ret
Example #4
Source File: test_schema.py From PandasSchema with GNU General Public License v3.0 | 6 votes |
def test_column_subset_detect_empty(self): """ Tests that when ordered=False, validation is possible by passing a subset of the columns contained in the schema Schema a b* (validation) Data Frame b (error) a column* is not being passed There will be an error if other than zero errors are found. """ df = pd.read_csv(StringIO(''' b,a 1,1 2,3 3,3 '''), sep=',', header=0, dtype=str) # should detect no errors results_empty = self.schema.validate(df, columns=['a']) self.assertEqual(len(results_empty), 0, 'There should be no errors')
Example #5
Source File: test_schema.py From PandasSchema with GNU General Public License v3.0 | 6 votes |
def test_mixed_columns(self): """ Tests that when ordered=True, the schema columns are associated with data frame columns by position, not name. In this case, the schema's column order is [a, b], while the data frame's order is [b, a]. There is an error in column b in the data frame (leading whitespace), and a validation on column a in the schema. Schema a (validation) b Data Frame b (error) a Thus there will only be an error if column b in the schema is linked to column a in the data frame, as is correct behaviour when ordered=True. """ df = pd.read_csv(StringIO(''' b,a 1,1 2,3 3,3 '''), sep=',', header=0, dtype=str) results = self.schema.validate(df) self.assertEqual(len(results), 1, 'There should be 1 error') self.assertEqual(results[0].row, 0) self.assertEqual(results[0].column, 'b', 'The Schema object is not associating columns and column schemas by position')
Example #6
Source File: _type_aliases.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #7
Source File: test_schema.py From PandasSchema with GNU General Public License v3.0 | 6 votes |
def test_column_subset_error(self): """ Tests that when ordered=False, validation is possible by passing a subset of the columns contained in the schema Schema a b (validation) Data Frame b (error) a There will be an error if a column different than 'a' or 'b' is passed """ df = pd.read_csv(StringIO(''' b,a 1,1 2,3 3,3 '''), sep=',', header=0, dtype=str) # should raise a PanSchArgumentError self.assertRaises(PanSchArgumentError, self.schema.validate, df, columns=['c'])
Example #8
Source File: _type_aliases.py From recruit with Apache License 2.0 | 6 votes |
def _set_array_types(): ibytes = [1, 2, 4, 8, 16, 32, 64] fbytes = [2, 4, 8, 10, 12, 16, 32, 64] for bytes in ibytes: bits = 8*bytes _add_array_type('int', bits) _add_array_type('uint', bits) for bytes in fbytes: bits = 8*bytes _add_array_type('float', bits) _add_array_type('complex', 2*bits) _gi = dtype('p') if _gi.type not in sctypes['int']: indx = 0 sz = _gi.itemsize _lst = sctypes['int'] while (indx < len(_lst) and sz >= _lst[indx](0).itemsize): indx += 1 sctypes['int'].insert(indx, _gi.type) sctypes['uint'].insert(indx, dtype('P').type)
Example #9
Source File: _internal.py From Fluid-Designer with GNU General Public License v3.0 | 5 votes |
def _usefields(adict, align): from .multiarray import dtype try: names = adict[-1] except KeyError: names = None if names is None: names, formats, offsets, titles = _makenames_list(adict, align) else: formats = [] offsets = [] titles = [] for name in names: res = adict[name] formats.append(res[0]) offsets.append(res[1]) if (len(res) > 2): titles.append(res[2]) else: titles.append(None) return dtype({"names" : names, "formats" : formats, "offsets" : offsets, "titles" : titles}, align) # construct an array_protocol descriptor list # from the fields attribute of a descriptor # This calls itself recursively but should eventually hit # a descriptor that has no fields and then return # a simple typestring
Example #10
Source File: _methods.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _prod(a, axis=None, dtype=None, out=None, keepdims=False, initial=_NoValue): return umr_prod(a, axis, dtype, out, keepdims, initial)
Example #11
Source File: _methods.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def _prod(a, axis=None, dtype=None, out=None, keepdims=False, initial=_NoValue): return umr_prod(a, axis, dtype, out, keepdims, initial)
Example #12
Source File: _methods.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def _all(a, axis=None, dtype=None, out=None, keepdims=False): return umr_all(a, axis, dtype, out, keepdims)
Example #13
Source File: _methods.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def _mean(a, axis=None, dtype=None, out=None, keepdims=False): arr = asanyarray(a) is_float16_result = False rcount = _count_reduce_items(arr, axis) # Make this warning show up first if rcount == 0: warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2) # Cast bool, unsigned int, and int to float64 by default if dtype is None: if issubclass(arr.dtype.type, (nt.integer, nt.bool_)): dtype = mu.dtype('f8') elif issubclass(arr.dtype.type, nt.float16): dtype = mu.dtype('f4') is_float16_result = True ret = umr_sum(arr, axis, dtype, out, keepdims) if isinstance(ret, mu.ndarray): ret = um.true_divide( ret, rcount, out=ret, casting='unsafe', subok=False) if is_float16_result and out is None: ret = arr.dtype.type(ret) elif hasattr(ret, 'dtype'): if is_float16_result: ret = arr.dtype.type(ret / rcount) else: ret = ret.dtype.type(ret / rcount) else: ret = ret / rcount return ret
Example #14
Source File: _methods.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) if isinstance(ret, mu.ndarray): ret = um.sqrt(ret, out=ret) elif hasattr(ret, 'dtype'): ret = ret.dtype.type(um.sqrt(ret)) else: ret = um.sqrt(ret) return ret
Example #15
Source File: _type_aliases.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def bitname(obj): """Return a bit-width name for a given type object""" bits = _bits_of(obj) dt = dtype(obj) char = dt.kind base = _kind_name(dt) if base == 'object': bits = 0 if bits != 0: char = "%s%d" % (char, bits // 8) return base, bits, char
Example #16
Source File: _methods.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def _mean(a, axis=None, dtype=None, out=None, keepdims=False): arr = asanyarray(a) is_float16_result = False rcount = _count_reduce_items(arr, axis) # Make this warning show up first if rcount == 0: warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2) # Cast bool, unsigned int, and int to float64 by default if dtype is None: if issubclass(arr.dtype.type, (nt.integer, nt.bool_)): dtype = mu.dtype('f8') elif issubclass(arr.dtype.type, nt.float16): dtype = mu.dtype('f4') is_float16_result = True ret = umr_sum(arr, axis, dtype, out, keepdims) if isinstance(ret, mu.ndarray): ret = um.true_divide( ret, rcount, out=ret, casting='unsafe', subok=False) if is_float16_result and out is None: ret = arr.dtype.type(ret) elif hasattr(ret, 'dtype'): if is_float16_result: ret = arr.dtype.type(ret / rcount) else: ret = ret.dtype.type(ret / rcount) else: ret = ret / rcount return ret
Example #17
Source File: _methods.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) if isinstance(ret, mu.ndarray): ret = um.sqrt(ret, out=ret) elif hasattr(ret, 'dtype'): ret = ret.dtype.type(um.sqrt(ret)) else: ret = um.sqrt(ret) return ret
Example #18
Source File: _type_aliases.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _bits_of(obj): try: info = next(v for v in _concrete_typeinfo.values() if v.type is obj) except StopIteration: if obj in _abstract_types.values(): raise ValueError("Cannot count the bits of an abstract type") # some third-party type - make a best-guess return dtype(obj).itemsize * 8 else: return info.bits
Example #19
Source File: _methods.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _sum(a, axis=None, dtype=None, out=None, keepdims=False, initial=_NoValue): return umr_sum(a, axis, dtype, out, keepdims, initial)
Example #20
Source File: _methods.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def _sum(a, axis=None, dtype=None, out=None, keepdims=False, initial=_NoValue): return umr_sum(a, axis, dtype, out, keepdims, initial)
Example #21
Source File: _type_aliases.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def bitname(obj): """Return a bit-width name for a given type object""" bits = _bits_of(obj) dt = dtype(obj) char = dt.kind base = _kind_name(dt) if base == 'object': bits = 0 if bits != 0: char = "%s%d" % (char, bits // 8) return base, bits, char
Example #22
Source File: _type_aliases.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def _bits_of(obj): try: info = next(v for v in _concrete_typeinfo.values() if v.type is obj) except StopIteration: if obj in _abstract_types.values(): raise ValueError("Cannot count the bits of an abstract type") # some third-party type - make a best-guess return dtype(obj).itemsize * 8 else: return info.bits
Example #23
Source File: _methods.py From Computable with MIT License | 5 votes |
def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) if isinstance(ret, mu.ndarray): ret = um.sqrt(ret, out=ret) else: ret = ret.dtype.type(um.sqrt(ret)) return ret
Example #24
Source File: _methods.py From Computable with MIT License | 5 votes |
def _all(a, axis=None, dtype=None, out=None, keepdims=False): return um.logical_and.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
Example #25
Source File: _methods.py From Computable with MIT License | 5 votes |
def _any(a, axis=None, dtype=None, out=None, keepdims=False): return um.logical_or.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
Example #26
Source File: _methods.py From Computable with MIT License | 5 votes |
def _prod(a, axis=None, dtype=None, out=None, keepdims=False): return um.multiply.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
Example #27
Source File: _methods.py From Computable with MIT License | 5 votes |
def _sum(a, axis=None, dtype=None, out=None, keepdims=False): return um.add.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
Example #28
Source File: _internal.py From Computable with MIT License | 5 votes |
def _add_trailing_padding(value, padding): """Inject the specified number of padding bytes at the end of a dtype""" from numpy.core.multiarray import dtype if value.fields is None: vfields = {'f0': (value, 0)} else: vfields = dict(value.fields) if value.names and value.names[-1] == '' and \ value[''].char == 'V': # A trailing padding field is already present vfields[''] = ('V%d' % (vfields[''][0].itemsize + padding), vfields[''][1]) value = dtype(vfields) else: # Get a free name for the padding field j = 0 while True: name = 'pad%d' % j if name not in vfields: vfields[name] = ('V%d' % padding, value.itemsize) break j += 1 value = dtype(vfields) if '' not in vfields: # Strip out the name of the padding field names = list(value.names) names[-1] = '' value.names = tuple(names) return value
Example #29
Source File: _type_aliases.py From recruit with Apache License 2.0 | 5 votes |
def _bits_of(obj): try: info = next(v for v in _concrete_typeinfo.values() if v.type is obj) except StopIteration: if obj in _abstract_types.values(): raise ValueError("Cannot count the bits of an abstract type") # some third-party type - make a best-guess return dtype(obj).itemsize * 8 else: return info.bits
Example #30
Source File: test_schema.py From PandasSchema with GNU General Public License v3.0 | 5 votes |
def test_mixed_columns(self): """ Tests that when ordered=False, the schema columns are associated with data frame columns by name, not position. In this case, the schema's column order is [a, b], while the data frame's order is [b, a]. There is an error in column b in the data frame (leading whitespace), and a validation on column b in the schema. Schema a b (validation) Data Frame b (error) a Thus there will only be an error if column b in the schema is linked to column b in the data frame, as is correct behaviour. """ df = pd.read_csv(StringIO(''' b,a 1,1 2,3 3,3 '''), sep=',', header=0, dtype=str) results = self.schema.validate(df) self.assertEqual(len(results), 1, 'There should be 1 error') self.assertEqual(results[0].row, 0) self.assertEqual(results[0].column, 'b', 'The Schema object is not associating columns and column schemas by name')