Python sklearn.metrics.pairwise.pairwise_kernels() Examples

The following are 25 code examples of sklearn.metrics.pairwise.pairwise_kernels(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.metrics.pairwise , or try the search function .
Example #1
Source File: core.py    From Summarizer with Apache License 2.0 6 votes vote down vote up
def _intertext_score(full_text):
    '''returns tuple of scored sentences
       in order of appearance
       Note: Doing an A/B test to
       compare results, reverting to 
       original algorithm.'''

    sentences = sentence_tokenizer(full_text)
    norm = _normalize(sentences)
    similarity_matrix = pairwise_kernels(norm, metric='cosine')
    scores = _textrank(similarity_matrix)
    scored_sentences = []
    for i, s in enumerate(sentences):
        scored_sentences.append((scores[i],i,s))
    top_scorers = sorted(scored_sentences,
                         key=lambda tup: tup[0], 
                         reverse=True)
    return top_scorers 
Example #2
Source File: localsimilaritykernel.py    From dscribe with Apache License 2.0 6 votes vote down vote up
def get_pairwise_matrix(self, X, Y=None):
        """Calculates the pairwise similarity of atomic environments with
        scikit-learn, and the pairwise metric configured in the constructor.

        Args:
            X(np.ndarray): Feature vector for the atoms in structure A
            Y(np.ndarray): Feature vector for the atoms in structure B

        Returns:
            np.ndarray: NxM matrix of local similarities between structures A
                and B, with N and M atoms respectively.

        """
        if callable(self.metric):
            params = self.kernel_params or {}
        else:
            params = {"gamma": self.gamma,
                      "degree": self.degree,
                      "coef0": self.coef0}
        return pairwise_kernels(X, Y, metric=self.metric,
                                filter_params=True, **params) 
Example #3
Source File: test_pairwise.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_pairwise_kernels_callable():
    # Test the pairwise_kernels helper function
    # with a callable function, with given keywords.
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))

    metric = callable_rbf_kernel
    kwds = {'gamma': 0.1}
    K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=Y, **kwds)
    assert_array_almost_equal(K1, K2)

    # callable function, X=Y
    K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=X, **kwds)
    assert_array_almost_equal(K1, K2) 
Example #4
Source File: core.py    From samacharbot2 with GNU General Public License v3.0 6 votes vote down vote up
def _intertext_score(full_text):
    '''returns tuple of scored sentences
       in order of appearance
       Note: Doing an A/B test to
       compare results, reverting to 
       original algorithm.'''

    sentences = sentence_tokenizer(full_text)
    norm = _normalize(sentences)
    similarity_matrix = pairwise_kernels(norm, metric='cosine')
    scores = _textrank(similarity_matrix)
    scored_sentences = []
    for i, s in enumerate(sentences):
        scored_sentences.append((scores[i],i,s))
    top_scorers = sorted(scored_sentences,
                         key=lambda tup: tup[0], 
                         reverse=True)
    return top_scorers 
Example #5
Source File: test_pairwise.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_pairwise_similarity_sparse_output(metric, pairwise_func):
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    # should be sparse
    K1 = pairwise_func(Xcsr, Ycsr, dense_output=False)
    assert issparse(K1)

    # should be dense, and equal to K1
    K2 = pairwise_func(X, Y, dense_output=True)
    assert not issparse(K2)
    assert_array_almost_equal(K1.todense(), K2)

    # show the kernel output equal to the sparse.todense()
    K3 = pairwise_kernels(X, Y=Y, metric=metric)
    assert_array_almost_equal(K1.todense(), K3) 
Example #6
Source File: test_pairwise.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_cosine_similarity():
    # Test the cosine_similarity.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    for X_, Y_ in ((X, None), (X, Y),
                   (Xcsr, None), (Xcsr, Ycsr)):
        # Test that the cosine is kernel is equal to a linear kernel when data
        # has been previously normalized by L2-norm.
        K1 = pairwise_kernels(X_, Y=Y_, metric="cosine")
        X_ = normalize(X_)
        if Y_ is not None:
            Y_ = normalize(Y_)
        K2 = pairwise_kernels(X_, Y=Y_, metric="linear")
        assert_array_almost_equal(K1, K2) 
Example #7
Source File: test_mmk.py    From skl-groups with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_mmk():
    bags = [np.random.normal(size=(np.random.randint(10, 100), 10))
            for _ in range(20)]

    res = MeanMapKernel(gamma=2.38).fit_transform(bags)
    for i in range(20):
        for j in range(20):
            exp = pairwise_kernels(bags[j], bags[i], metric='rbf', gamma=2.38)
            assert_almost_equal(res[i, j], exp.mean(),
                                err_msg="({} to {})".format(i, j))

    res = MeanMapKernel(kernel='linear').fit(bags[:5]).transform(bags[-2:])
    for i in range(5):
        for j in range(18, 20):
            exp = pairwise_kernels(bags[j], bags[i], metric='linear')
            assert_almost_equal(res[j - 18, i], exp.mean(),
                                err_msg="({} to {})".format(i, j))

    # fails on wrong dimension
    assert_raises(
        ValueError,
        lambda:MeanMapKernel().fit(bags).transform([np.random.randn(20, 8)]))


################################################################################ 
Example #8
Source File: svm.py    From svm with MIT License 6 votes vote down vote up
def decision_function(self, X):
        """Decision function of the SVM.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input data.

        Returns
        -------
        y : array-like, shape (n_samples,)
            The values of decision function.
        """
        X = check_array(X)
        if self.kernel == "linear":
            return self.intercept_ + np.dot(X, self.coef_)
        else:
            K = pairwise_kernels(X, self.support_vectors_, metric=self.kernel,
                                 **self.kernel_args)
            return (self.intercept_ + np.sum(self.dual_coef_[np.newaxis, :] *
                                             self.y * K, axis=1)) 
Example #9
Source File: test_pairwise.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_pairwise_parallel():
    wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1}
    metrics = [(pairwise_distances, 'euclidean', {}),
               (pairwise_distances, wminkowski, wminkowski_kwds),
               (pairwise_distances, 'wminkowski', wminkowski_kwds),
               (pairwise_kernels, 'polynomial', {'degree': 1}),
               (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}),
               ]
    for func, metric, kwds in metrics:
        yield check_pairwise_parallel, func, metric, kwds 
Example #10
Source File: test_pairwise.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_pairwise_precomputed():
    for func in [pairwise_distances, pairwise_kernels]:
        # Test correct shape
        assert_raises_regexp(ValueError, '.* shape .*',
                             func, np.zeros((5, 3)), metric='precomputed')
        # with two args
        assert_raises_regexp(ValueError, '.* shape .*',
                             func, np.zeros((5, 3)), np.zeros((4, 4)),
                             metric='precomputed')
        # even if shape[1] agrees (although thus second arg is spurious)
        assert_raises_regexp(ValueError, '.* shape .*',
                             func, np.zeros((5, 3)), np.zeros((4, 3)),
                             metric='precomputed')

        # Test not copied (if appropriate dtype)
        S = np.zeros((5, 5))
        S2 = func(S, metric="precomputed")
        assert_true(S is S2)
        # with two args
        S = np.zeros((5, 3))
        S2 = func(S, np.zeros((3, 3)), metric="precomputed")
        assert_true(S is S2)

        # Test always returns float dtype
        S = func(np.array([[1]], dtype='int'), metric='precomputed')
        assert_equal('f', S.dtype.kind)

        # Test converts list to array-like
        S = func([[1.]], metric='precomputed')
        assert_true(isinstance(S, np.ndarray)) 
Example #11
Source File: core.py    From samacharbot2 with GNU General Public License v3.0 5 votes vote down vote up
def _title_similarity_score(full_text, title):
    """Similarity scores for sentences with
       title in descending order"""

    sentences = sentence_tokenizer(full_text)
    norm = _normalize([title]+sentences)
    similarity_matrix = pairwise_kernels(norm, metric='cosine')
    return sorted(zip(
                     similarity_matrix[0,1:],
                     range(len(similarity_matrix)),
                     sentences
                     ),
                 key = lambda tup: tup[0],
                 reverse=True
                 ) 
Example #12
Source File: test_pairwise.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_pairwise_kernels_filter_param():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    K = rbf_kernel(X, Y, gamma=0.1)
    params = {"gamma": 0.1, "blabla": ":)"}
    K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
    assert_array_almost_equal(K, K2)

    assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) 
Example #13
Source File: dml_algorithm.py    From pyDML with GNU General Public License v3.0 5 votes vote down vote up
def _get_kernel(self, X, Y=None):
        if callable(self.kernel_):
            params = self.kernel_params_ or {}
        else:
            params = {'gamma': self.gamma_,
                      'degree': self.degree_,
                      'coef0': self.coef0_}

        return pairwise_kernels(X, Y, metric=self.kernel_, filter_params=True, **params) 
Example #14
Source File: test_pairwise.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_cosine_similarity_sparse_output():
    # Test if cosine_similarity correctly produces sparse output.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((3, 4))
    Xcsr = csr_matrix(X)
    Ycsr = csr_matrix(Y)

    K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False)
    assert_true(issparse(K1))

    K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine")
    assert_array_almost_equal(K1.todense(), K2) 
Example #15
Source File: mmk.py    From skl-groups with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def transform(self, X):
        '''
        Compute kernels from X to :attr:`features_`.

        Parameters
        ----------
        X : list of arrays or :class:`skl_groups.features.Features`
            The bags to compute "from". Must have same dimension as
            :attr:`features_`.

        Returns
        -------
        K : array of shape ``[len(X), len(features_)]``
            The kernel evaluations from X to :attr:`features_`.
        '''

        X = as_features(X, stack=True, bare=True)
        Y = self.features_

        if X.dim != Y.dim:
            raise ValueError("MMK transform got dimension {} but had {} at fit"
                             .format(X.dim, Y.dim))

        pointwise = pairwise_kernels(X.stacked_features, Y.stacked_features,
                                     metric=self.kernel,
                                     filter_params=True,
                                     **self._get_kernel_params())

        # TODO: is there a way to do this without a Python loop?
        K = np.empty((len(X), len(Y)))
        for i in range(len(X)):
            for j in range(len(Y)):
                K[i, j] = pointwise[X._boundaries[i]:X._boundaries[i+1],
                                    Y._boundaries[j]:Y._boundaries[j+1]].mean()

        return K 
Example #16
Source File: clustering.py    From tslearn with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def _get_kernel(self, X, Y=None):
        kernel_params = self._get_kernel_params()
        if self.kernel == "gak":
            return cdist_gak(X, Y, n_jobs=self.n_jobs, verbose=self.verbose,
                             **kernel_params)
        else:
            X_sklearn = to_sklearn_dataset(X)
            if Y is not None:
                Y_sklearn = to_sklearn_dataset(Y)
            else:
                Y_sklearn = Y
            return pairwise_kernels(X_sklearn, Y_sklearn, metric=self.kernel,
                                    n_jobs=self.n_jobs, **kernel_params) 
Example #17
Source File: test_pairwise.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def test_pairwise_kernels_filter_param():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    K = rbf_kernel(X, Y, gamma=0.1)
    params = {"gamma": 0.1, "blabla": ":)"}
    K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params)
    assert_array_almost_equal(K, K2)

    assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) 
Example #18
Source File: test_pairwise.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def test_pairwise_kernels(metric):
    # Test the pairwise_kernels helper function.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    function = PAIRWISE_KERNEL_FUNCTIONS[metric]
    # Test with Y=None
    K1 = pairwise_kernels(X, metric=metric)
    K2 = function(X)
    assert_array_almost_equal(K1, K2)
    # Test with Y=Y
    K1 = pairwise_kernels(X, Y=Y, metric=metric)
    K2 = function(X, Y=Y)
    assert_array_almost_equal(K1, K2)
    # Test with tuples as X and Y
    X_tuples = tuple([tuple([v for v in row]) for row in X])
    Y_tuples = tuple([tuple([v for v in row]) for row in Y])
    K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
    assert_array_almost_equal(K1, K2)

    # Test with sparse X and Y
    X_sparse = csr_matrix(X)
    Y_sparse = csr_matrix(Y)
    if metric in ["chi2", "additive_chi2"]:
        # these don't support sparse matrices yet
        assert_raises(ValueError, pairwise_kernels,
                      X_sparse, Y=Y_sparse, metric=metric)
        return
    K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
    assert_array_almost_equal(K1, K2) 
Example #19
Source File: core.py    From Summarizer with Apache License 2.0 5 votes vote down vote up
def _title_similarity_score(full_text, title):
    """Similarity scores for sentences with
       title in descending order"""

    sentences = sentence_tokenizer(full_text)
    norm = _normalize([title]+sentences)
    similarity_matrix = pairwise_kernels(norm, metric='cosine')
    return sorted(zip(
                     similarity_matrix[0,1:],
                     range(len(similarity_matrix)),
                     sentences
                     ),
                 key = lambda tup: tup[0],
                 reverse=True
                 ) 
Example #20
Source File: test_kernel_ridge.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_kernel_ridge_precomputed():
    for kernel in ["linear", "rbf", "poly", "cosine"]:
        K = pairwise_kernels(X, X, metric=kernel)
        pred = KernelRidge(kernel=kernel).fit(X, y).predict(X)
        pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K)
        assert_array_almost_equal(pred, pred2) 
Example #21
Source File: svm.py    From svm with MIT License 4 votes vote down vote up
def fit(self, X, y):
        """Fit the model to data matrix X and target y.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input data.

        y : array-like, shape (n_samples,)
            The class labels.

        Returns
        -------
        self : returns a trained SVM
        """
        self.support_vectors_ = check_array(X)
        self.y = check_array(y, ensure_2d=False)

        random_state = check_random_state(self.random_state)

        self.kernel_args = {}
        if self.kernel == "rbf" and self.gamma is not None:
            self.kernel_args["gamma"] = self.gamma
        elif self.kernel == "poly":
            self.kernel_args["degree"] = self.degree
            self.kernel_args["coef0"] = self.coef0
        elif self.kernel == "sigmoid":
            self.kernel_args["coef0"] = self.coef0

        K = pairwise_kernels(X, metric=self.kernel, **self.kernel_args)
        self.dual_coef_ = np.zeros(X.shape[0])
        self.intercept_ = _svm.smo(
            K, y, self.dual_coef_, self.C, random_state, self.tol,
            self.numpasses, self.maxiter, self.verbose)

        # If the user was using a linear kernel, lets also compute and store
        # the weights. This will speed up evaluations during testing time.
        if self.kernel == "linear":
            self.coef_ = np.dot(self.dual_coef_ * self.y, self.support_vectors_)

        # only samples with nonzero coefficients are relevant for predictions
        support_vectors = np.nonzero(self.dual_coef_)
        self.dual_coef_ = self.dual_coef_[support_vectors]
        self.support_vectors_ = X[support_vectors]
        self.y = y[support_vectors]

        return self 
Example #22
Source File: test_pairwise.py    From twitter-stock-recommendation with MIT License 4 votes vote down vote up
def test_pairwise_kernels():    # Test the pairwise_kernels helper function.

    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    Y = rng.random_sample((2, 4))
    # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS.
    test_metrics = ["rbf", "laplacian", "sigmoid", "polynomial", "linear",
                    "chi2", "additive_chi2"]
    for metric in test_metrics:
        function = PAIRWISE_KERNEL_FUNCTIONS[metric]
        # Test with Y=None
        K1 = pairwise_kernels(X, metric=metric)
        K2 = function(X)
        assert_array_almost_equal(K1, K2)
        # Test with Y=Y
        K1 = pairwise_kernels(X, Y=Y, metric=metric)
        K2 = function(X, Y=Y)
        assert_array_almost_equal(K1, K2)
        # Test with tuples as X and Y
        X_tuples = tuple([tuple([v for v in row]) for row in X])
        Y_tuples = tuple([tuple([v for v in row]) for row in Y])
        K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric)
        assert_array_almost_equal(K1, K2)

        # Test with sparse X and Y
        X_sparse = csr_matrix(X)
        Y_sparse = csr_matrix(Y)
        if metric in ["chi2", "additive_chi2"]:
            # these don't support sparse matrices yet
            assert_raises(ValueError, pairwise_kernels,
                          X_sparse, Y=Y_sparse, metric=metric)
            continue
        K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric)
        assert_array_almost_equal(K1, K2)
    # Test with a callable function, with given keywords.
    metric = callable_rbf_kernel
    kwds = {'gamma': 0.1}
    K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=Y, **kwds)
    assert_array_almost_equal(K1, K2)

    # callable function, X=Y
    K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds)
    K2 = rbf_kernel(X, Y=X, **kwds)
    assert_array_almost_equal(K1, K2) 
Example #23
Source File: spectral.py    From intro_ds with Apache License 2.0 4 votes vote down vote up
def fit(self, X, y=None):
        """Creates an affinity matrix for X using the selected affinity,
        then applies spectral clustering to this affinity matrix.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features)
            OR, if affinity==`precomputed`, a precomputed affinity
            matrix of shape (n_samples, n_samples)
        """
        X = check_array(X, accept_sparse=['csr', 'csc', 'coo'],
                        dtype=np.float64)
        if X.shape[0] == X.shape[1] and self.affinity != "precomputed":
            warnings.warn("The spectral clustering API has changed. ``fit``"
                          "now constructs an affinity matrix from data. To use"
                          " a custom affinity matrix, "
                          "set ``affinity=precomputed``.")

        if self.affinity == 'nearest_neighbors':
            connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors, include_self=True,
                                            n_jobs=self.n_jobs)
            self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
        elif self.affinity == 'precomputed':
            self.affinity_matrix_ = X
        else:
            params = self.kernel_params
            if params is None:
                params = {}
            if not callable(self.affinity):
                params['gamma'] = self.gamma
                params['degree'] = self.degree
                params['coef0'] = self.coef0
            self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity,
                                                     filter_params=True,
                                                     **params)

        random_state = check_random_state(self.random_state)
        self.labels_ = spectral_clustering(self.affinity_matrix_,
                                           n_clusters=self.n_clusters,
                                           eigen_solver=self.eigen_solver,
                                           random_state=random_state,
                                           n_init=self.n_init,
                                           eigen_tol=self.eigen_tol,
                                           assign_labels=self.assign_labels)
        return self 
Example #24
Source File: ssad.py    From Deep-SAD-PyTorch with MIT License 4 votes vote down vote up
def test(self, dataset: BaseADDataset, device: str = 'cpu', n_jobs_dataloader: int = 0):
        """Tests the SSAD model on the test data."""
        logger = logging.getLogger()

        _, test_loader = dataset.loaders(batch_size=128, num_workers=n_jobs_dataloader)

        # Get data from loader
        idx_label_score = []
        X = ()
        idxs = []
        labels = []
        for data in test_loader:
            inputs, label_batch, _, idx = data
            inputs, label_batch, idx = inputs.to(device), label_batch.to(device), idx.to(device)
            if self.hybrid:
                inputs = self.ae_net.encoder(inputs)  # in hybrid approach, take code representation of AE as features
            X_batch = inputs.view(inputs.size(0), -1)  # X_batch.shape = (batch_size, n_channels * height * width)
            X += (X_batch.cpu().data.numpy(),)
            idxs += idx.cpu().data.numpy().astype(np.int64).tolist()
            labels += label_batch.cpu().data.numpy().astype(np.int64).tolist()
        X = np.concatenate(X)

        # Testing
        logger.info('Starting testing...')
        start_time = time.time()

        # Build kernel
        kernel = pairwise_kernels(X, self.X_svs, metric=self.kernel, gamma=self.gamma)

        scores = (-1.0) * self.model.apply(kernel)

        self.results['test_time'] = time.time() - start_time
        scores = scores.flatten()
        self.rho = -self.model.threshold

        # Save triples of (idx, label, score) in a list
        idx_label_score += list(zip(idxs, labels, scores.tolist()))
        self.results['test_scores'] = idx_label_score

        # Compute AUC
        _, labels, scores = zip(*idx_label_score)
        labels = np.array(labels)
        scores = np.array(scores)
        self.results['test_auc'] = roc_auc_score(labels, scores)

        # If hybrid, also test model with linear kernel
        if self.hybrid:
            start_time = time.time()
            linear_kernel = pairwise_kernels(X, self.linear_X_svs, metric='linear')
            scores_linear = (-1.0) * self.linear_model.apply(linear_kernel)
            self.results['test_time_linear'] = time.time() - start_time
            scores_linear = scores_linear.flatten()
            self.results['test_auc_linear'] = roc_auc_score(labels, scores_linear)
            logger.info('Test AUC linear model: {:.2f}%'.format(100. * self.results['test_auc_linear']))
            logger.info('Test Time linear model: {:.3f}s'.format(self.results['test_time_linear']))

        # Log results
        logger.info('Test AUC: {:.2f}%'.format(100. * self.results['test_auc']))
        logger.info('Test Time: {:.3f}s'.format(self.results['test_time']))
        logger.info('Finished testing.') 
Example #25
Source File: _eigenpro.py    From scikit-learn-extra with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def _kernel(self, X, Y):
        """Calculate the kernel matrix

        Parameters
        ---------
        X : {float, array}, shape = [n_samples, n_features]
            Input data.

        Y : {float, array}, shape = [n_centers, n_targets]
            Kernel centers.

        Returns
        -------
        K : {float, array}, shape = [n_samples, n_centers]
            Kernel matrix.
        """
        if (
            self.kernel != "rbf"
            and self.kernel != "laplace"
            and self.kernel != "cauchy"
        ):
            if callable(self.kernel):
                params = self.kernel_params or {}
            else:
                params = {
                    "gamma": self.gamma_,
                    "degree": self.degree,
                    "coef0": self.coef0,
                }
            return pairwise_kernels(
                X, Y, metric=self.kernel, filter_params=True, **params
            )
        distance = euclidean_distances(X, Y, squared=True)
        bandwidth = np.float32(1.0 / np.sqrt(2.0 * self.gamma_))
        if self.kernel == "rbf":
            distance = -self.gamma_ * distance
            K = np.exp(distance)
        elif self.kernel == "laplace":
            d = np.maximum(distance, 0)
            K = np.exp(-np.sqrt(d) / bandwidth)
        else:  # self.kernel == "cauchy":
            K = 1 / (1 + 2.0 * self.gamma_ * distance)
        return K