Python object_detection.utils.np_box_list_ops.non_max_suppression() Examples
The following are 30
code examples of object_detection.utils.np_box_list_ops.non_max_suppression().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.np_box_list_ops
, or try the search function
.
Example #1
Source File: np_box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_select_at_most_two_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 2 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #2
Source File: np_box_list_ops_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_select_from_ten_indentical_boxes(self): boxes = np.array(10 * [[0, 0, 1, 1]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array(10 * [0.8])) iou_threshold = .5 max_output_size = 3 expected_boxes = np.array([[0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #3
Source File: np_box_list_ops_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_select_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #4
Source File: np_box_list_ops_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_select_from_ten_indentical_boxes(self): boxes = np.array(10 * [[0, 0, 1, 1]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array(10 * [0.8])) iou_threshold = .5 max_output_size = 3 expected_boxes = np.array([[0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #5
Source File: np_box_list_ops_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_different_iou_threshold(self): boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array([0.9, 0.8, 0.7, 0.6])) max_output_size = 4 iou_threshold = .4 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300],], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .5 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .8 expected_boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #6
Source File: np_box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_with_no_scores_field(self): boxlist = np_box_list.BoxList(self._boxes) max_output_size = 3 iou_threshold = 0.5 with self.assertRaises(ValueError): np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold)
Example #7
Source File: np_box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_nms_disabled_max_output_size_equals_three(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 1. # No NMS expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 0.1, 1, 1.1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #8
Source File: np_box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_select_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #9
Source File: np_box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_select_at_most_two_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 2 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #10
Source File: np_box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_select_from_ten_indentical_boxes(self): boxes = np.array(10 * [[0, 0, 1, 1]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array(10 * [0.8])) iou_threshold = .5 max_output_size = 3 expected_boxes = np.array([[0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #11
Source File: np_box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_different_iou_threshold(self): boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array([0.9, 0.8, 0.7, 0.6])) max_output_size = 4 iou_threshold = .4 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300],], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .5 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .8 expected_boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #12
Source File: np_box_list_ops_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_select_at_most_two_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 2 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #13
Source File: per_image_evaluation.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def _get_overlaps_and_scores_box_mode( self, detected_boxes, detected_scores, groundtruth_boxes, groundtruth_is_group_of_list): """Computes overlaps and scores between detected and groudntruth boxes. Args: detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates detected_scores: A 1-d numpy array of length N representing classification score groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box has group-of tag. If a groundtruth box is group-of box, every detection matching this box is ignored. Returns: iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If gt_non_group_of_boxlist.num_boxes() == 0 it will be None. ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If gt_group_of_boxlist.num_boxes() == 0 it will be None. scores: The score of the detected boxlist. num_boxes: Number of non-maximum suppressed detected boxes. """ detected_boxlist = np_box_list.BoxList(detected_boxes) detected_boxlist.add_field('scores', detected_scores) detected_boxlist = np_box_list_ops.non_max_suppression( detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold) gt_non_group_of_boxlist = np_box_list.BoxList( groundtruth_boxes[~groundtruth_is_group_of_list]) gt_group_of_boxlist = np_box_list.BoxList( groundtruth_boxes[groundtruth_is_group_of_list]) iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist) ioa = np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist) scores = detected_boxlist.get_field('scores') num_boxes = detected_boxlist.num_boxes() return iou, ioa, scores, num_boxes
Example #14
Source File: np_box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_different_iou_threshold(self): boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array([0.9, 0.8, 0.7, 0.6])) max_output_size = 4 iou_threshold = .4 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300],], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .5 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .8 expected_boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #15
Source File: np_box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_select_at_most_thirty_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 30 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #16
Source File: np_box_list_ops_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_with_no_scores_field(self): boxlist = np_box_list.BoxList(self._boxes) max_output_size = 3 iou_threshold = 0.5 with self.assertRaises(ValueError): np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold)
Example #17
Source File: np_box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_select_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #18
Source File: np_box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_nms_disabled_max_output_size_equals_three(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 1. # No NMS expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 0.1, 1, 1.1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #19
Source File: np_box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_with_no_scores_field(self): boxlist = np_box_list.BoxList(self._boxes) max_output_size = 3 iou_threshold = 0.5 with self.assertRaises(ValueError): np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold)
Example #20
Source File: np_box_list_ops_test.py From HereIsWally with MIT License | 5 votes |
def test_different_iou_threshold(self): boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array([0.9, 0.8, 0.7, 0.6])) max_output_size = 4 iou_threshold = .4 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300],], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .5 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .8 expected_boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #21
Source File: np_box_list_ops_test.py From HereIsWally with MIT License | 5 votes |
def test_select_from_ten_indentical_boxes(self): boxes = np.array(10 * [[0, 0, 1, 1]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array(10 * [0.8])) iou_threshold = .5 max_output_size = 3 expected_boxes = np.array([[0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #22
Source File: np_box_list_ops_test.py From HereIsWally with MIT License | 5 votes |
def test_select_at_most_two_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 2 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #23
Source File: np_box_list_ops_test.py From HereIsWally with MIT License | 5 votes |
def test_select_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #24
Source File: np_box_list_ops_test.py From HereIsWally with MIT License | 5 votes |
def test_nms_disabled_max_output_size_equals_three(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 1. # No NMS expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 0.1, 1, 1.1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #25
Source File: np_box_list_ops_test.py From HereIsWally with MIT License | 5 votes |
def test_with_no_scores_field(self): boxlist = np_box_list.BoxList(self._boxes) max_output_size = 3 iou_threshold = 0.5 with self.assertRaises(ValueError): np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold)
Example #26
Source File: np_box_list_ops_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def test_different_iou_threshold(self): boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array([0.9, 0.8, 0.7, 0.6])) max_output_size = 4 iou_threshold = .4 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300],], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .5 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .8 expected_boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #27
Source File: np_box_list_ops_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def test_select_from_ten_indentical_boxes(self): boxes = np.array(10 * [[0, 0, 1, 1]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array(10 * [0.8])) iou_threshold = .5 max_output_size = 3 expected_boxes = np.array([[0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #28
Source File: np_box_list_ops_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def test_select_at_most_two_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 2 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #29
Source File: np_box_list_ops_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def test_select_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes)
Example #30
Source File: np_box_list_ops_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def test_with_no_scores_field(self): boxlist = np_box_list.BoxList(self._boxes) max_output_size = 3 iou_threshold = 0.5 with self.assertRaises(ValueError): np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold)