Python object_detection.utils.np_box_list_ops.multi_class_non_max_suppression() Examples
The following are 30
code examples of object_detection.utils.np_box_list_ops.multi_class_non_max_suppression().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.np_box_list_ops
, or try the search function
.
Example #1
Source File: np_box_list_ops_test.py From hands-detection with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #2
Source File: np_box_list_ops_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #3
Source File: np_box_list_ops_test.py From mtl-ssl with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #4
Source File: np_box_list_ops_test.py From motion-rcnn with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #5
Source File: np_box_list_ops_test.py From models with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #6
Source File: np_box_list_ops_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #7
Source File: np_box_list_ops_test.py From open-solution-googleai-object-detection with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #8
Source File: np_box_list_ops_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #9
Source File: np_box_list_ops_test.py From AniSeg with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #10
Source File: np_box_list_ops_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #11
Source File: np_box_list_ops_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #12
Source File: np_box_list_ops_test.py From Elphas with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #13
Source File: np_box_list_ops_test.py From MBMD with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #14
Source File: np_box_list_ops_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #15
Source File: np_box_list_ops_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #16
Source File: np_box_list_ops_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #17
Source File: np_box_list_ops_test.py From moveo_ros with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #18
Source File: np_box_list_ops_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #19
Source File: np_box_list_ops_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #20
Source File: np_box_list_ops_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #21
Source File: np_box_list_ops_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #22
Source File: np_box_list_ops_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #23
Source File: np_box_list_ops_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #24
Source File: np_box_list_ops_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #25
Source File: np_box_list_ops_test.py From HereIsWally with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #26
Source File: np_box_list_ops_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #27
Source File: np_box_list_ops_test.py From Person-Detection-and-Tracking with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #28
Source File: np_box_list_ops_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #29
Source File: np_box_list_ops_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)
Example #30
Source File: np_box_list_ops_test.py From object_detector_app with MIT License | 5 votes |
def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes)