Python object_detection.builders.hyperparams_builder.build() Examples
The following are 30
code examples of object_detection.builders.hyperparams_builder.build().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.builders.hyperparams_builder
, or try the search function
.
Example #1
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_use_relu_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu)
Example #2
Source File: box_head_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_arg_scope_with_hyperparams( self, op_type=hyperparams_pb2.Hyperparams.CONV): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #3
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_separable_conv2d_and_conv2d_and_transpose_have_same_parameters(self): conv_hyperparams_text_proto = """ regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) kwargs_1, kwargs_2, kwargs_3 = scope.values() self.assertDictEqual(kwargs_1, kwargs_2) self.assertDictEqual(kwargs_1, kwargs_3)
Example #4
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_explicit_fc_op_arg_scope_has_fully_connected_op(self): conv_hyperparams_text_proto = """ op: FC regularizer { l1_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) self.assertTrue(self._get_scope_key(slim.fully_connected) in scope)
Example #5
Source File: box_predictor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def _build_arg_scope_with_hyperparams(self, op_type=hyperparams_pb2.Hyperparams.FC): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #6
Source File: mask_rcnn_box_predictor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_arg_scope_with_hyperparams(self, op_type=hyperparams_pb2.Hyperparams.FC): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #7
Source File: box_head_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_arg_scope_with_hyperparams(self, op_type=hyperparams_pb2.Hyperparams.FC): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #8
Source File: class_head_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_arg_scope_with_hyperparams( self, op_type=hyperparams_pb2.Hyperparams.CONV): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #9
Source File: box_predictor_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_build_default_mask_rcnn_box_predictor(self): box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = ( hyperparams_pb2.Hyperparams.FC) box_predictor = box_predictor_builder.build( argscope_fn=mock.Mock(return_value='arg_scope'), box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) self.assertFalse(box_predictor._use_dropout) self.assertAlmostEqual(box_predictor._dropout_keep_prob, 0.5) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_predictor._box_code_size, 4) self.assertFalse(box_predictor._predict_instance_masks) self.assertFalse(box_predictor._predict_keypoints)
Example #10
Source File: class_head_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_arg_scope_with_hyperparams(self, op_type=hyperparams_pb2.Hyperparams.FC): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #11
Source File: box_head_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_arg_scope_with_hyperparams( self, op_type=hyperparams_pb2.Hyperparams.CONV): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #12
Source File: model_builder.py From object_detector_app with MIT License | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #13
Source File: faster_rcnn_meta_arch_test_lib.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _get_second_stage_box_predictor(self, num_classes, is_training, predict_masks, masks_are_class_agnostic): box_predictor_proto = box_predictor_pb2.BoxPredictor() text_format.Merge(self._get_second_stage_box_predictor_text_proto(), box_predictor_proto) if predict_masks: text_format.Merge( self._add_mask_to_second_stage_box_predictor_text_proto( masks_are_class_agnostic), box_predictor_proto) return box_predictor_builder.build( hyperparams_builder.build, box_predictor_proto, num_classes=num_classes, is_training=is_training)
Example #14
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
Example #15
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_do_not_use_batch_norm_if_default(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['normalizer_fn'], None) self.assertEqual(conv_scope_arguments['normalizer_params'], None)
Example #16
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_return_l2_regularizer_weights(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { weight: 0.42 } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] regularizer = conv_scope_arguments['weights_regularizer'] weights = np.array([1., -1, 4., 2.]) with self.test_session() as sess: result = sess.run(regularizer(tf.constant(weights))) self.assertAllClose(np.power(weights, 2).sum() / 2.0 * 0.42, result)
Example #17
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_use_relu_6_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU_6 """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu6)
Example #18
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_in(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_IN uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 100.)
Example #19
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_out(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_OUT uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 40.)
Example #20
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_avg(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_AVG uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=4. / (100. + 40.))
Example #21
Source File: hyperparams_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_variance_in_range_with_truncated_normal_initializer(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.8 } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=0.49, tol=1e-1)
Example #22
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_variance_in_range_with_truncated_normal_initializer(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { mean: 0.0 stddev: 0.8 } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=0.49, tol=1e-1)
Example #23
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_avg(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_AVG uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=4. / (100. + 40.))
Example #24
Source File: box_predictor_test.py From object_detector_app with MIT License | 6 votes |
def _build_arg_scope_with_hyperparams(self, op_type=hyperparams_pb2.Hyperparams.FC): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True)
Example #25
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_out(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_OUT uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 40.)
Example #26
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_variance_in_range_with_variance_scaling_initializer_fan_in(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { variance_scaling_initializer { factor: 2.0 mode: FAN_IN uniform: false } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] initializer = conv_scope_arguments['weights_initializer'] self._assert_variance_in_range(initializer, shape=[100, 40], variance=2. / 100.)
Example #27
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_use_relu_6_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU_6 """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu6)
Example #28
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_use_relu_activation(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } activation: RELU """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu)
Example #29
Source File: hyperparams_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_do_not_use_batch_norm_if_default(self): conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ conv_hyperparams_proto = hyperparams_pb2.Hyperparams() text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto) scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True) conv_scope_arguments = scope.values()[0] self.assertEqual(conv_scope_arguments['normalizer_fn'], None) self.assertEqual(conv_scope_arguments['normalizer_params'], None)
Example #30
Source File: box_predictor_builder_test.py From object_detector_app with MIT License | 6 votes |
def test_build_default_mask_rcnn_box_predictor(self): box_predictor_proto = box_predictor_pb2.BoxPredictor() box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = ( hyperparams_pb2.Hyperparams.FC) box_predictor = box_predictor_builder.build( argscope_fn=mock.Mock(return_value='arg_scope'), box_predictor_config=box_predictor_proto, is_training=True, num_classes=90) self.assertFalse(box_predictor._use_dropout) self.assertAlmostEqual(box_predictor._dropout_keep_prob, 0.5) self.assertEqual(box_predictor.num_classes, 90) self.assertTrue(box_predictor._is_training) self.assertEqual(box_predictor._box_code_size, 4) self.assertFalse(box_predictor._predict_instance_masks) self.assertFalse(box_predictor._predict_keypoints)