Python tensorflow.python.layers.core.dropout() Examples
The following are 9
code examples of tensorflow.python.layers.core.dropout().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.layers.core
, or try the search function
.
Example #1
Source File: convnet_builder.py From benchmarks with The Unlicense | 6 votes |
def dropout(self, keep_prob=0.5, input_layer=None): if input_layer is None: input_layer = self.top_layer else: self.top_size = None name = 'dropout' + str(self.counts['dropout']) with tf.variable_scope(name): if not self.phase_train: keep_prob = 1.0 if self.use_tf_layers: dropout = core_layers.dropout(input_layer, 1. - keep_prob, training=self.phase_train) else: dropout = tf.nn.dropout(input_layer, keep_prob) self.top_layer = dropout return dropout
Example #2
Source File: convnet_builder.py From benchmarks with Apache License 2.0 | 6 votes |
def dropout(self, keep_prob=0.5, input_layer=None): if input_layer is None: input_layer = self.top_layer else: self.top_size = None name = 'dropout' + str(self.counts['dropout']) with tf.variable_scope(name): if not self.phase_train: keep_prob = 1.0 if self.use_tf_layers: dropout = core_layers.dropout(input_layer, 1. - keep_prob, training=self.phase_train) else: dropout = tf.nn.dropout(input_layer, keep_prob) self.top_layer = dropout return dropout
Example #3
Source File: small.py From dirt-t with MIT License | 5 votes |
def classifier(x, phase, enc_phase=1, trim=0, scope='class', reuse=None, internal_update=False, getter=None): with tf.variable_scope(scope, reuse=reuse, custom_getter=getter): with arg_scope([leaky_relu], a=0.1), \ arg_scope([conv2d, dense], activation=leaky_relu, bn=True, phase=phase), \ arg_scope([batch_norm], internal_update=internal_update): preprocess = instance_norm if args.inorm else tf.identity layout = [ (preprocess, (), {}), (conv2d, (64, 3, 1), {}), (conv2d, (64, 3, 1), {}), (conv2d, (64, 3, 1), {}), (max_pool, (2, 2), {}), (dropout, (), dict(training=phase)), (noise, (1,), dict(phase=phase)), (conv2d, (64, 3, 1), {}), (conv2d, (64, 3, 1), {}), (conv2d, (64, 3, 1), {}), (max_pool, (2, 2), {}), (dropout, (), dict(training=phase)), (noise, (1,), dict(phase=phase)), (conv2d, (64, 3, 1), {}), (conv2d, (64, 3, 1), {}), (conv2d, (64, 3, 1), {}), (avg_pool, (), dict(global_pool=True)), (dense, (args.Y,), dict(activation=None)) ] if enc_phase: start = 0 end = len(layout) - trim else: start = len(layout) - trim end = len(layout) for i in xrange(start, end): with tf.variable_scope('l{:d}'.format(i)): f, f_args, f_kwargs = layout[i] x = f(x, *f_args, **f_kwargs) return x
Example #4
Source File: convnet_builder.py From parallax with Apache License 2.0 | 5 votes |
def dropout(self, keep_prob=0.5, input_layer=None): if input_layer is None: input_layer = self.top_layer else: self.top_size = None name = 'dropout' + str(self.counts['dropout']) with tf.variable_scope(name): if not self.phase_train: keep_prob = 1.0 if self.use_tf_layers: dropout = core_layers.dropout(input_layer, 1. - keep_prob) else: dropout = tf.nn.dropout(input_layer, keep_prob) self.top_layer = dropout return dropout
Example #5
Source File: tfm_builder_densenet.py From Centripetal-SGD with Apache License 2.0 | 5 votes |
def _dropout(self, bottom, drop_rate): return dropout(bottom, rate=drop_rate, training=self.training)
Example #6
Source File: convnet_builder.py From deeplearning-benchmark with Apache License 2.0 | 5 votes |
def dropout(self, keep_prob=0.5, input_layer=None): if input_layer is None: input_layer = self.top_layer else: self.top_size = None name = 'dropout' + str(self.counts['dropout']) with tf.variable_scope(name): if not self.phase_train: keep_prob = 1.0 if self.use_tf_layers: dropout = core_layers.dropout(input_layer, 1. - keep_prob) else: dropout = tf.nn.dropout(input_layer, keep_prob) self.top_layer = dropout return dropout
Example #7
Source File: convnet_builder.py From tf-imagenet with Apache License 2.0 | 5 votes |
def dropout(self, keep_prob=0.5, input_layer=None): if input_layer is None: input_layer = self.top_layer else: self.top_size = None name = 'dropout' + str(self.counts['dropout']) with tf.variable_scope(name): if not self.phase_train: keep_prob = 1.0 if self.use_tf_layers: dropout = core_layers.dropout(input_layer, 1. - keep_prob) else: dropout = tf.nn.dropout(input_layer, keep_prob) self.top_layer = dropout return dropout
Example #8
Source File: convnet_builder.py From dlcookbook-dlbs with Apache License 2.0 | 5 votes |
def dropout(self, keep_prob=0.5, input_layer=None): if input_layer is None: input_layer = self.top_layer else: self.top_size = None name = 'dropout' + str(self.counts['dropout']) with tf.variable_scope(name): if not self.phase_train: keep_prob = 1.0 if self.use_tf_layers: dropout = core_layers.dropout(input_layer, 1. - keep_prob) else: dropout = tf.nn.dropout(input_layer, keep_prob) self.top_layer = dropout return dropout
Example #9
Source File: dnn.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def __init__(self, hidden_units, feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Adagrad', activation_fn=nn.relu, dropout=None, input_layer_partitioner=None, config=None): """Initializes a `DNNRegressor` instance. Args: hidden_units: Iterable of number hidden units per layer. All layers are fully connected. Ex. `[64, 32]` means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `_FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the `features`. If it is a `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, then weight_column.normalizer_fn is applied on it to get weight tensor. optimizer: An instance of `tf.Optimizer` used to train the model. Defaults to Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not `None`, the probability we will drop out a given coordinate. input_layer_partitioner: Optional. Partitioner for input layer. Defaults to `min_max_variable_partitioner` with `min_slice_size` 64 << 20. config: `RunConfig` object to configure the runtime settings. """ def _model_fn(features, labels, mode, config): return _dnn_model_fn( features=features, labels=labels, mode=mode, head=head_lib. # pylint: disable=protected-access _regression_head_with_mean_squared_error_loss( label_dimension=label_dimension, weight_column=weight_column), hidden_units=hidden_units, feature_columns=tuple(feature_columns or []), optimizer=optimizer, activation_fn=activation_fn, dropout=dropout, input_layer_partitioner=input_layer_partitioner, config=config) super(DNNRegressor, self).__init__( model_fn=_model_fn, model_dir=model_dir, config=config)