Python torch.utils.data.aligned_dataset() Examples
The following are 6
code examples of torch.utils.data.aligned_dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.utils.data
, or try the search function
.
Example #1
Source File: custom_dataset_data_loader.py From iSketchNFill with GNU General Public License v3.0 | 6 votes |
def CreateDataset(opt): dataset = None if opt.dataset_mode == 'aligned': from data.aligned_dataset import AlignedDataset dataset = AlignedDataset() elif opt.dataset_mode == 'unaligned': from data.unaligned_dataset import UnalignedDataset dataset = UnalignedDataset() elif opt.dataset_mode == 'labeled': from data.labeled_dataset import LabeledDataset dataset = LabeledDataset() elif opt.dataset_mode == 'single': from data.single_dataset import SingleDataset dataset = SingleDataset() else: raise ValueError("Dataset [%s] not recognized." % opt.dataset_mode) print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset
Example #2
Source File: custom_dataset_data_loader.py From non-stationary_texture_syn with MIT License | 6 votes |
def CreateDataset(opt): dataset = None if opt.dataset_mode == 'aligned': from data.aligned_dataset import AlignedDataset dataset = AlignedDataset() elif opt.dataset_mode == 'unaligned': from data.unaligned_dataset import UnalignedDataset dataset = UnalignedDataset() elif opt.dataset_mode == 'single': from data.single_dataset import SingleDataset dataset = SingleDataset() elif opt.dataset_mode == 'half_crop': from data.half_dataset import HalfDataset dataset = HalfDataset() else: raise ValueError("Dataset [%s] not recognized." % opt.dataset_mode) print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset
Example #3
Source File: custom_dataset_data_loader.py From EverybodyDanceNow-Temporal-FaceGAN with MIT License | 6 votes |
def CreateDataset(opt): dataset = None if 'face' in opt.name: from data.aligned_dataset_GAN import AlignedDataset dataset = AlignedDataset() elif opt.is_temporal: from data.aligned_dataset_temporal import AlignedDataset dataset = AlignedDataset() else: from data.aligned_dataset import AlignedDataset dataset = AlignedDataset() print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset
Example #4
Source File: custom_dataset_data_loader.py From Shift-Net_pytorch with MIT License | 6 votes |
def CreateDataset(opt): dataset = None if opt.dataset_mode == 'aligned': from data.aligned_dataset import AlignedDataset dataset = AlignedDataset() elif opt.dataset_mode == 'aligned_resized': from data.aligned_dataset_resized import AlignedDatasetResized dataset = AlignedDatasetResized() elif opt.dataset_mode == 'single': from data.single_dataset import SingleDataset dataset = SingleDataset() else: raise ValueError("Dataset [%s] not recognized." % opt.dataset_mode) print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset
Example #5
Source File: custom_dataset_data_loader.py From EverybodyDanceNow_reproduce_pytorch with MIT License | 5 votes |
def CreateDataset(opt): dataset = None from data.aligned_dataset import AlignedDataset dataset = AlignedDataset() print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset
Example #6
Source File: custom_dataset_data_loader.py From deep-learning-for-document-dewarping with MIT License | 5 votes |
def CreateDataset(opt): dataset = None from data.aligned_dataset import AlignedDataset dataset = AlignedDataset() print("dataset [%s] was created" % (dataset.name())) dataset.initialize(opt) return dataset