Python mmdet.datasets.build_dataloader() Examples
The following are 1
code examples of mmdet.datasets.build_dataloader().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mmdet.datasets
, or try the search function
.
Example #1
Source File: benchmark.py From mmdetection with Apache License 2.0 | 4 votes |
def main(): args = parse_args() cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=False, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_module(model) model = MMDataParallel(model, device_ids=[0]) model.eval() # the first several iterations may be very slow so skip them num_warmup = 5 pure_inf_time = 0 # benchmark with 2000 image and take the average for i, data in enumerate(data_loader): torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): model(return_loss=False, rescale=True, **data) torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if i >= num_warmup: pure_inf_time += elapsed if (i + 1) % args.log_interval == 0: fps = (i + 1 - num_warmup) / pure_inf_time print(f'Done image [{i + 1:<3}/ 2000], fps: {fps:.1f} img / s') if (i + 1) == 2000: pure_inf_time += elapsed fps = (i + 1 - num_warmup) / pure_inf_time print(f'Overall fps: {fps:.1f} img / s') break