Python tables.Float32Atom() Examples
The following are 13
code examples of tables.Float32Atom().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tables
, or try the search function
.
Example #1
Source File: orient_pharynx.py From tierpsy-tracker with MIT License | 6 votes |
def init_data(ske_file_id, tot_rows): #create and reference all the arrays field = 'skeleton' dims = (tot_rows,2,2) if '/' + field in ske_file_id: ske_file_id.remove_node('/', field) skeletons = ske_file_id.create_carray('/', field, tables.Float32Atom(dflt=np.nan), dims, filters=TABLE_FILTERS) traj_dat = ske_file_id.get_node('/trajectories_data') has_skeleton = traj_dat.cols.has_skeleton has_skeleton[:] = np.zeros_like(has_skeleton) #delete previous return skeletons, has_skeleton
Example #2
Source File: dense_design_matrix.py From TextDetector with GNU General Public License v3.0 | 5 votes |
def init_hdf5(self, path, shapes, title="Pytables Dataset", y_dtype='float'): """ Initializes the hdf5 file into which the data will be stored. This must be called before calling fill_hdf5. Parameters ---------- path : string The name of the hdf5 file. shapes : tuple The shapes of X and y. title : string, optional Name of the dataset. e.g. For SVHN, set this to "SVHN Dataset". "Pytables Dataset" is used as title, by default. y_dtype : string, optional Either 'float' or 'int'. Decides the type of pytables atom used to store the y data. By default 'float' type is used. """ assert y_dtype in ['float', 'int'], ( "y_dtype can be 'float' or 'int' only" ) x_shape, y_shape = shapes # make pytables ensure_tables() h5file = tables.openFile(path, mode="w", title=title) gcolumns = h5file.createGroup(h5file.root, "Data", "Data") atom = (tables.Float32Atom() if config.floatX == 'float32' else tables.Float64Atom()) h5file.createCArray(gcolumns, 'X', atom=atom, shape=x_shape, title="Data values", filters=self.filters) if y_dtype != 'float': # For 1D ndarray of int labels, override the atom to integer atom = (tables.Int32Atom() if config.floatX == 'float32' else tables.Int64Atom()) h5file.createCArray(gcolumns, 'y', atom=atom, shape=y_shape, title="Data targets", filters=self.filters) return h5file, gcolumns
Example #3
Source File: getSkeletonsTables.py From tierpsy-tracker with MIT License | 5 votes |
def _initSkeletonsArrays(ske_file_id, tot_rows, resampling_N, worm_midbody): '''initialize arrays to save the skeletons data. Used by trajectories2Skeletons ''' # this is to initialize the arrays to one row, pytables do not accept empty arrays as initializers of carrays if tot_rows == 0: tot_rows = 1 #define dimession of each array, it is the only part of the array that varies data_dims = {} for data_str in ['skeleton', 'contour_side1', 'contour_side2']: data_dims[data_str + '_length'] = (tot_rows,) data_dims[data_str] = (tot_rows, resampling_N, 2) data_dims['contour_width'] = (tot_rows, resampling_N) data_dims['width_midbody'] = (tot_rows,) data_dims['contour_area'] = (tot_rows,) #create and reference all the arrays def _create_array(field, dims): if '/' + field in ske_file_id: ske_file_id.remove_node('/', field) return ske_file_id.create_carray('/', field, tables.Float32Atom(dflt=np.nan), dims, filters=TABLE_FILTERS) skel_arrays = {field:_create_array(field, dims) for field, dims in data_dims.items()} inram_skel_arrays = {field:np.ones(dims, dtype=np.float32)*np.nan for field, dims in data_dims.items()} # flags to mark if a frame was skeletonized traj_dat = ske_file_id.get_node('/trajectories_data') has_skeleton = traj_dat.cols.has_skeleton has_skeleton[:] = np.zeros_like(has_skeleton) #delete previous # return skel_arrays, has_skeleton return skel_arrays, has_skeleton, inram_skel_arrays
Example #4
Source File: compressVideo.py From tierpsy-tracker with MIT License | 5 votes |
def initMasksGroups(fid, expected_frames, im_height, im_width, attr_params, save_full_interval, is_expandable=True): # open node to store the compressed (masked) data mask_dataset = createImgGroup(fid, "/mask", expected_frames, im_height, im_width, is_expandable) tot_save_full = (expected_frames // save_full_interval) + 1 full_dataset = createImgGroup(fid, "/full_data", tot_save_full, im_height, im_width, is_expandable) full_dataset._v_attrs['save_interval'] = save_full_interval assert all(x in ['expected_fps', 'is_light_background', 'microns_per_pixel'] for x in attr_params) set_unit_conversions(mask_dataset, **attr_params) set_unit_conversions(full_dataset, **attr_params) if is_expandable: mean_intensity = fid.create_earray('/', 'mean_intensity', atom=tables.Float32Atom(), shape=(0,), expectedrows=expected_frames, filters=TABLE_FILTERS) else: mean_intensity = fid.create_carray('/', 'mean_intensity', atom=tables.Float32Atom(), shape=(expected_frames,), filters=TABLE_FILTERS) return mask_dataset, full_dataset, mean_intensity
Example #5
Source File: read_write.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def numpy2hdf5(filepath, mylist, data_name='data', permission='w'): if permission == 'w': f = tables.open_file(filepath, mode=permission) atom = tables.Float32Atom() array_c = f.create_earray(f.root, data_name, atom, tuple([0] + [mylist.shape[i] for i in range(1, len(mylist.shape))])) array_c.append(mylist) f.close() elif permission == 'a': f = tables.open_file(filepath, mode='a') f.root.data.append(mylist) f.close()
Example #6
Source File: data.py From 3DUnetCNN with MIT License | 5 votes |
def create_data_file(out_file, n_channels, n_samples, image_shape): hdf5_file = tables.open_file(out_file, mode='w') filters = tables.Filters(complevel=5, complib='blosc') data_shape = tuple([0, n_channels] + list(image_shape)) truth_shape = tuple([0, 1] + list(image_shape)) data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape, filters=filters, expectedrows=n_samples) truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape, filters=filters, expectedrows=n_samples) affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', tables.Float32Atom(), shape=(0, 4, 4), filters=filters, expectedrows=n_samples) return hdf5_file, data_storage, truth_storage, affine_storage
Example #7
Source File: data.py From 3D-CNNs-for-Liver-Classification with Apache License 2.0 | 5 votes |
def create_data_file(out_file, n_channels, n_samples, image_shape): hdf5_file = tables.open_file(out_file, mode='w') filters = tables.Filters(complevel=5, complib='blosc') data_shape = tuple([0, n_channels] + list(image_shape)) truth_shape = tuple([0, 1] + list(image_shape)) data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape, filters=filters, expectedrows=n_samples) truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape, filters=filters, expectedrows=n_samples) affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', tables.Float32Atom(), shape=(0, 4, 4), filters=filters, expectedrows=n_samples) return hdf5_file, data_storage, truth_storage, affine_storage
Example #8
Source File: preprocess.py From 3D-CNNs-for-Liver-Classification with Apache License 2.0 | 5 votes |
def create_data_file(out_file, n_channels, n_samples, image_shape): hdf5_file = tables.open_file(out_file, mode='w') filters = tables.Filters(complevel=5, complib='blosc') data_shape = tuple([0, n_channels] + list(image_shape)) truth_shape = tuple([0, 1]) data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape, filters=filters, expectedrows=n_samples) truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape, filters=filters, expectedrows=n_samples) return hdf5_file, data_storage, truth_storage
Example #9
Source File: data.py From Keras-Brats-Improved-Unet3d with MIT License | 5 votes |
def create_data_file(out_file, n_channels, n_samples, image_shape): hdf5_file = tables.open_file(out_file, mode='w') filters = tables.Filters(complevel=5, complib='blosc') data_shape = tuple([0, n_channels] + list(image_shape)) truth_shape = tuple([0, 1] + list(image_shape)) data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape, filters=filters, expectedrows=n_samples) truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape, filters=filters, expectedrows=n_samples) affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', tables.Float32Atom(), shape=(0, 4, 4), filters=filters, expectedrows=n_samples) return hdf5_file, data_storage, truth_storage, affine_storage
Example #10
Source File: moving_mnist.py From RATM with MIT License | 5 votes |
def dump_test_set(self, h5filepath, nframes, framesize): # set rng to a hardcoded state, so we always have the same test set! self.numpy_rng.seed(1) with tables.openFile(h5filepath, 'w') as h5file: h5file.createArray(h5file.root, 'test_targets', self.partitions['test']['targets']) vids = h5file.createCArray( h5file.root, 'test_images', tables.Float32Atom(), shape=(10000, nframes, framesize, framesize), filters=tables.Filters(complevel=5, complib='zlib')) pos = h5file.createCArray( h5file.root, 'test_pos', tables.UInt16Atom(), shape=(10000, nframes, 2), filters=tables.Filters(complevel=5, complib='zlib')) for i in range(100): print i (vids[i*100:(i+1)*100], pos[i*100:(i+1)*100], _) = self.get_batch( 'test', 100, nframes, framesize, idx=np.arange(i*100,(i+1)*100)) h5file.flush()
Example #11
Source File: dense_design_matrix.py From TextDetector with GNU General Public License v3.0 | 4 votes |
def resize(self, h5file, start, stop): """ Resizes the X and y tables. This must be called before calling fill_hdf5. Parameters ---------- h5file : hdf5 file handle Handle to an hdf5 object. start : int The start index to write data. stop : int The index of the record following the last record to be written. """ ensure_tables() # TODO is there any smarter and more efficient way to this? data = h5file.getNode('/', "Data") try: gcolumns = h5file.createGroup('/', "Data_", "Data") except tables.exceptions.NodeError: h5file.removeNode('/', "Data_", 1) gcolumns = h5file.createGroup('/', "Data_", "Data") start = 0 if start is None else start stop = gcolumns.X.nrows if stop is None else stop atom = (tables.Float32Atom() if config.floatX == 'float32' else tables.Float64Atom()) x = h5file.createCArray(gcolumns, 'X', atom=atom, shape=((stop - start, data.X.shape[1])), title="Data values", filters=self.filters) if np.issubdtype(data.y, int): # For 1D ndarray of int labels, override the atom to integer atom = (tables.Int32Atom() if config.floatX == 'float32' else tables.Int64Atom()) y = h5file.createCArray(gcolumns, 'y', atom=atom, shape=((stop - start, data.y.shape[1])), title="Data targets", filters=self.filters) x[:] = data.X[start:stop] y[:] = data.y[start:stop] h5file.removeNode('/', "Data", 1) h5file.renameNode('/', "Data", "Data_") h5file.flush() return h5file, gcolumns
Example #12
Source File: Concurrent_AP.py From Concurrent_AP with MIT License | 4 votes |
def check_HDF5_arrays(hdf5_file, N, convergence_iter): """Check that the HDF5 data structure of file handle 'hdf5_file' has all the required nodes organizing the various two-dimensional arrays required for Affinity Propagation clustering ('Responsibility' matrix, 'Availability', etc.). Parameters ---------- hdf5_file : string or file handle Name of the Hierarchical Data Format under consideration. N : int The number of samples in the data-set that will undergo Affinity Propagation clustering. convergence_iter : int Number of iterations with no change in the number of estimated clusters that stops the convergence. """ Worker.hdf5_lock.acquire() with tables.open_file(hdf5_file, 'r+') as fileh: if not hasattr(fileh.root, 'aff_prop_group'): fileh.create_group(fileh.root, "aff_prop_group") atom = tables.Float32Atom() filters = None #filters = tables.Filters(5, 'blosc') for feature in ('availabilities', 'responsibilities', 'similarities', 'temporaries'): if not hasattr(fileh.root.aff_prop_group, feature): fileh.create_carray(fileh.root.aff_prop_group, feature, atom, (N, N), "Matrix of {0} for affinity " "propagation clustering".format(feature), filters = filters) if not hasattr(fileh.root.aff_prop_group, 'parallel_updates'): fileh.create_carray(fileh.root.aff_prop_group, 'parallel_updates', atom, (N, convergence_iter), "Matrix of parallel updates for affinity propagation " "clustering", filters = filters) Worker.hdf5_lock.release()
Example #13
Source File: voice.py From voice-corpus-tool with Mozilla Public License 2.0 | 4 votes |
def _hdf5(self, alphabet_path, hdf5_path, ninput=26, ncontext=9): skipped = [] str_to_label = {} alphabet_size = 0 with codecs.open(alphabet_path, 'r', 'utf-8') as fin: for line in fin: if line[0:2] == '\\#': line = '#\n' elif line[0] == '#': continue str_to_label[line[:-1]] = alphabet_size alphabet_size += 1 def process_sample(sample): if len(sample.transcript) == 0: skipped.append(sample.original_name) return None sample.write() try: samplerate, audio = wav.read(sample.file.filename) transcript = np.asarray([str_to_label[c] for c in sample.transcript]) except: skipped.append(sample.original_name) return None features = mfcc(audio, samplerate=samplerate, numcep=ninput)[::2] empty_context = np.zeros((ncontext, ninput), dtype=features.dtype) features = np.concatenate((empty_context, features, empty_context)) if (2*ncontext + len(features)) < len(transcript): skipped.append(sample.original_name) return None return features, len(features), transcript, len(transcript) out_data = self._map('Computing MFCC features...', self.samples, process_sample) out_data = [s for s in out_data if s is not None] if len(skipped) > 0: log('WARNING - Skipped %d samples that had no transcription, had been too short for their transcription or had been missed:' % len(skipped)) for s in skipped: log(' - Sample origin: "%s".' % s) if len(out_data) <= 0: log('No samples written to feature DB "%s".' % hdf5_path) return # list of tuples -> tuple of lists features, features_len, transcript, transcript_len = zip(*out_data) log('Writing feature DB...') with tables.open_file(hdf5_path, 'w') as file: features_dset = file.create_vlarray(file.root, 'features', tables.Float32Atom(), filters=tables.Filters(complevel=1)) # VLArray atoms need to be 1D, so flatten feature array for f in features: features_dset.append(np.reshape(f, -1)) features_len_dset = file.create_array(file.root, 'features_len', features_len) transcript_dset = file.create_vlarray(file.root, 'transcript', tables.Int32Atom(), filters=tables.Filters(complevel=1)) for t in transcript: transcript_dset.append(t) transcript_len_dset = file.create_array(file.root, 'transcript_len', transcript_len) log('Wrote features of %d samples to feature DB "%s".' % (len(features), hdf5_path))