Python pandas.SparseSeries() Examples

The following are 30 code examples of pandas.SparseSeries(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pandas , or try the search function .
Example #1
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_concat_different_fill(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        for kind in ['integer', 'block']:
            sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, name='y', kind=kind, fill_value=0)

            with tm.assert_produces_warning(PerformanceWarning):
                res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, kind=kind)
            tm.assert_sp_series_equal(res, exp)

            with tm.assert_produces_warning(PerformanceWarning):
                res = pd.concat([sparse2, sparse1])
            exp = pd.concat([pd.Series(val2), pd.Series(val1)])
            exp = pd.SparseSeries(exp, kind=kind, fill_value=0)
            tm.assert_sp_series_equal(res, exp) 
Example #2
Source File: test_combine_concat.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_concat_different_kind(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        sparse1 = pd.SparseSeries(val1, name='x', kind='integer')
        sparse2 = pd.SparseSeries(val2, name='y', kind='block')

        res = pd.concat([sparse1, sparse2])
        exp = pd.concat([pd.Series(val1), pd.Series(val2)])
        exp = pd.SparseSeries(exp, kind=sparse1.kind)
        tm.assert_sp_series_equal(res, exp)

        res = pd.concat([sparse2, sparse1])
        exp = pd.concat([pd.Series(val2), pd.Series(val1)])
        exp = pd.SparseSeries(exp, kind=sparse2.kind)
        tm.assert_sp_series_equal(res, exp, consolidate_block_indices=True) 
Example #3
Source File: test_indexing.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_get(self):
        s = pd.SparseSeries([1, np.nan, np.nan, 3, np.nan])
        assert s.get(0) == 1
        assert np.isnan(s.get(1))
        assert s.get(5) is None

        s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE'))
        assert s.get('A') == 1
        assert np.isnan(s.get('B'))
        assert s.get('C') == 0
        assert s.get('XX') is None

        s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE'),
                            fill_value=0)
        assert s.get('A') == 1
        assert np.isnan(s.get('B'))
        assert s.get('C') == 0
        assert s.get('XX') is None 
Example #4
Source File: test_indexing.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_get(self):
        s = pd.SparseSeries([1, np.nan, np.nan, 3, np.nan])
        assert s.get(0) == 1
        assert np.isnan(s.get(1))
        assert s.get(5) is None

        s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE'))
        assert s.get('A') == 1
        assert np.isnan(s.get('B'))
        assert s.get('C') == 0
        assert s.get('XX') is None

        s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE'),
                            fill_value=0)
        assert s.get('A') == 1
        assert np.isnan(s.get('B'))
        assert s.get('C') == 0
        assert s.get('XX') is None 
Example #5
Source File: test_reshape.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_dataframe_dummies_prefix_dict(self, sparse):
        prefixes = {'A': 'from_A', 'B': 'from_B'}
        df = DataFrame({'C': [1, 2, 3],
                        'A': ['a', 'b', 'a'],
                        'B': ['b', 'b', 'c']})
        result = get_dummies(df, prefix=prefixes, sparse=sparse)

        expected = DataFrame({'C': [1, 2, 3],
                              'from_A_a': [1, 0, 1],
                              'from_A_b': [0, 1, 0],
                              'from_B_b': [1, 1, 0],
                              'from_B_c': [0, 0, 1]})

        columns = ['from_A_a', 'from_A_b', 'from_B_b', 'from_B_c']
        expected[columns] = expected[columns].astype(np.uint8)
        if sparse:
            expected[columns] = expected[columns].apply(
                lambda x: pd.SparseSeries(x)
            )

        assert_frame_equal(result, expected) 
Example #6
Source File: test_combine_concat.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_concat_different_fill(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        for kind in ['integer', 'block']:
            sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, name='y', kind=kind, fill_value=0)

            with tm.assert_produces_warning(PerformanceWarning):
                res = pd.concat([sparse1, sparse2])

            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, kind=kind)
            tm.assert_sp_series_equal(res, exp)

            with tm.assert_produces_warning(PerformanceWarning):
                res = pd.concat([sparse2, sparse1])

            exp = pd.concat([pd.Series(val2), pd.Series(val1)])
            exp = pd.SparseSeries(exp, kind=kind, fill_value=0)
            tm.assert_sp_series_equal(res, exp) 
Example #7
Source File: test_reshape.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_dataframe_dummies_drop_first_with_na(self, df, sparse):
        df.loc[3, :] = [np.nan, np.nan, np.nan]
        result = get_dummies(df, dummy_na=True, drop_first=True,
                             sparse=sparse).sort_index(axis=1)
        expected = DataFrame({'C': [1, 2, 3, np.nan],
                              'A_b': [0, 1, 0, 0],
                              'A_nan': [0, 0, 0, 1],
                              'B_c': [0, 0, 1, 0],
                              'B_nan': [0, 0, 0, 1]})
        cols = ['A_b', 'A_nan', 'B_c', 'B_nan']
        expected[cols] = expected[cols].astype(np.uint8)
        expected = expected.sort_index(axis=1)
        if sparse:
            for col in cols:
                expected[col] = pd.SparseSeries(expected[col])

        assert_frame_equal(result, expected)

        result = get_dummies(df, dummy_na=False, drop_first=True,
                             sparse=sparse)
        expected = expected[['C', 'A_b', 'B_c']]
        assert_frame_equal(result, expected) 
Example #8
Source File: test_combine_concat.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_concat(self, kind):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
        sparse2 = pd.SparseSeries(val2, name='y', kind=kind)

        res = pd.concat([sparse1, sparse2])
        exp = pd.concat([pd.Series(val1), pd.Series(val2)])
        exp = pd.SparseSeries(exp, kind=kind)
        tm.assert_sp_series_equal(res, exp, consolidate_block_indices=True)

        sparse1 = pd.SparseSeries(val1, fill_value=0, name='x', kind=kind)
        sparse2 = pd.SparseSeries(val2, fill_value=0, name='y', kind=kind)

        res = pd.concat([sparse1, sparse2])
        exp = pd.concat([pd.Series(val1), pd.Series(val2)])
        exp = pd.SparseSeries(exp, fill_value=0, kind=kind)
        tm.assert_sp_series_equal(res, exp, consolidate_block_indices=True) 
Example #9
Source File: test_format.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_sparse_bool(self):
        # GH 13110
        s = pd.SparseSeries([True, False, False, True, False, False],
                            fill_value=False)
        result = repr(s)
        dtype = '' if use_32bit_repr else ', dtype=int32'
        exp = ("0     True\n1    False\n2    False\n"
               "3     True\n4    False\n5    False\n"
               "dtype: Sparse[bool, False]\nBlockIndex\n"
               "Block locations: array([0, 3]{0})\n"
               "Block lengths: array([1, 1]{0})".format(dtype))
        assert result == exp

        with option_context("display.max_rows", 3):
            result = repr(s)
            exp = ("0     True\n     ...  \n5    False\n"
                   "Length: 6, dtype: Sparse[bool, False]\nBlockIndex\n"
                   "Block locations: array([0, 3]{0})\n"
                   "Block lengths: array([1, 1]{0})".format(dtype))
            assert result == exp 
Example #10
Source File: concat.py    From recruit with Apache License 2.0 6 votes vote down vote up
def _get_series_result_type(result, objs=None):
    """
    return appropriate class of Series concat
    input is either dict or array-like
    """
    from pandas import SparseSeries, SparseDataFrame, DataFrame

    # concat Series with axis 1
    if isinstance(result, dict):
        # concat Series with axis 1
        if all(isinstance(c, (SparseSeries, SparseDataFrame))
               for c in compat.itervalues(result)):
            return SparseDataFrame
        else:
            return DataFrame

    # otherwise it is a SingleBlockManager (axis = 0)
    if result._block.is_sparse:
        return SparseSeries
    else:
        return objs[0]._constructor 
Example #11
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_constructor_dtype(self):
        arr = SparseSeries([np.nan, 1, 2, np.nan])
        assert arr.dtype == SparseDtype(np.float64)
        assert np.isnan(arr.fill_value)

        arr = SparseSeries([np.nan, 1, 2, np.nan], fill_value=0)
        assert arr.dtype == SparseDtype(np.float64, 0)
        assert arr.fill_value == 0

        arr = SparseSeries([0, 1, 2, 4], dtype=np.int64, fill_value=np.nan)
        assert arr.dtype == SparseDtype(np.int64, np.nan)
        assert np.isnan(arr.fill_value)

        arr = SparseSeries([0, 1, 2, 4], dtype=np.int64)
        assert arr.dtype == SparseDtype(np.int64, 0)
        assert arr.fill_value == 0

        arr = SparseSeries([0, 1, 2, 4], fill_value=0, dtype=np.int64)
        assert arr.dtype == SparseDtype(np.int64, 0)
        assert arr.fill_value == 0 
Example #12
Source File: test_frame.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_constructor_preserve_attr(self):
        # GH 13866
        arr = pd.SparseArray([1, 0, 3, 0], dtype=np.int64, fill_value=0)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

        df = pd.SparseDataFrame({'x': arr})
        assert df['x'].dtype == SparseDtype(np.int64)
        assert df['x'].fill_value == 0

        s = pd.SparseSeries(arr, name='x')
        assert s.dtype == SparseDtype(np.int64)
        assert s.fill_value == 0

        df = pd.SparseDataFrame(s)
        assert df['x'].dtype == SparseDtype(np.int64)
        assert df['x'].fill_value == 0

        df = pd.SparseDataFrame({'x': s})
        assert df['x'].dtype == SparseDtype(np.int64)
        assert df['x'].fill_value == 0 
Example #13
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_getitem_slice(self):
        idx = self.bseries.index
        res = self.bseries[::2]
        assert isinstance(res, SparseSeries)

        expected = self.bseries.reindex(idx[::2])
        tm.assert_sp_series_equal(res, expected)

        res = self.bseries[:5]
        assert isinstance(res, SparseSeries)
        tm.assert_sp_series_equal(res, self.bseries.reindex(idx[:5]))

        res = self.bseries[5:]
        tm.assert_sp_series_equal(res, self.bseries.reindex(idx[5:]))

        # negative indices
        res = self.bseries[:-3]
        tm.assert_sp_series_equal(res, self.bseries.reindex(idx[:-3])) 
Example #14
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_numpy_cumsum(self):
        result = np.cumsum(self.bseries)
        expected = SparseSeries(self.bseries.to_dense().cumsum())
        tm.assert_sp_series_equal(result, expected)

        result = np.cumsum(self.zbseries)
        expected = self.zbseries.to_dense().cumsum().to_sparse()
        tm.assert_series_equal(result, expected)

        msg = "the 'dtype' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.cumsum(self.bseries, dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.cumsum(self.zbseries, out=result) 
Example #15
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_unary_operators(self, values, op, fill_value):
        # https://github.com/pandas-dev/pandas/issues/22835
        values = np.asarray(values)
        if op is operator.invert:
            new_fill_value = not fill_value
        else:
            new_fill_value = op(fill_value)
        s = SparseSeries(values,
                         fill_value=fill_value,
                         index=['a', 'b', 'c', 'd'],
                         name='name')
        result = op(s)
        expected = SparseSeries(op(values),
                                fill_value=new_fill_value,
                                index=['a', 'b', 'c', 'd'],
                                name='name')
        tm.assert_sp_series_equal(result, expected) 
Example #16
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_dropna(self):
        sp = SparseSeries([0, 0, 0, nan, nan, 5, 6], fill_value=0)

        sp_valid = sp.dropna()

        expected = sp.to_dense().dropna()
        expected = expected[expected != 0]
        exp_arr = pd.SparseArray(expected.values, fill_value=0, kind='block')
        tm.assert_sp_array_equal(sp_valid.values, exp_arr)
        tm.assert_index_equal(sp_valid.index, expected.index)
        assert len(sp_valid.sp_values) == 2

        result = self.bseries.dropna()
        expected = self.bseries.to_dense().dropna()
        assert not isinstance(result, SparseSeries)
        tm.assert_series_equal(result, expected) 
Example #17
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_notna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.notna()
        exp = pd.SparseSeries([False, False, True, True, False], name='xxx',
                              fill_value=False)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.notna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([False, True, True, True, True], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #18
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_isna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.isna()
        exp = pd.SparseSeries([True, True, False, False, True], name='xxx',
                              fill_value=True)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.isna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([True, False, False, False, False], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #19
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_shift(self):
        series = SparseSeries([nan, 1., 2., 3., nan, nan], index=np.arange(6))

        shifted = series.shift(0)
        # assert shifted is not series
        tm.assert_sp_series_equal(shifted, series)

        f = lambda s: s.shift(1)
        _dense_series_compare(series, f)

        f = lambda s: s.shift(-2)
        _dense_series_compare(series, f)

        series = SparseSeries([nan, 1., 2., 3., nan, nan],
                              index=bdate_range('1/1/2000', periods=6))
        f = lambda s: s.shift(2, freq='B')
        _dense_series_compare(series, f)

        f = lambda s: s.shift(2, freq=BDay())
        _dense_series_compare(series, f) 
Example #20
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_value_counts_int(self):
        vals = [1, 2, 0, 1, 2, 1, 2, 0, 1, 1]
        dense = pd.Series(vals, name='xx')

        # fill_value is np.nan, but should not be included in the result
        sparse = pd.SparseSeries(vals, name='xx')
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False))

        sparse = pd.SparseSeries(vals, name='xx', fill_value=0)
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False)) 
Example #21
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_to_frame(self):
        # GH 9850
        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(), exp)

        exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)

        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
                                 default_fill_value=0)

        tm.assert_sp_frame_equal(s.to_frame(), exp)
        exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp) 
Example #22
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_concat_different_kind(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        sparse1 = pd.SparseSeries(val1, name='x', kind='integer')
        sparse2 = pd.SparseSeries(val2, name='y', kind='block', fill_value=0)

        with tm.assert_produces_warning(PerformanceWarning):
            res = pd.concat([sparse1, sparse2])
        exp = pd.concat([pd.Series(val1), pd.Series(val2)])
        exp = pd.SparseSeries(exp, kind='integer')
        tm.assert_sp_series_equal(res, exp)

        with tm.assert_produces_warning(PerformanceWarning):
            res = pd.concat([sparse2, sparse1])
        exp = pd.concat([pd.Series(val2), pd.Series(val1)])
        exp = pd.SparseSeries(exp, kind='block', fill_value=0)
        tm.assert_sp_series_equal(res, exp) 
Example #23
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_concat(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        for kind in ['integer', 'block']:
            sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, kind=kind)
            tm.assert_sp_series_equal(res, exp)

            sparse1 = pd.SparseSeries(val1, fill_value=0, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, fill_value=0, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, fill_value=0, kind=kind)
            tm.assert_sp_series_equal(res, exp,
                                      consolidate_block_indices=True) 
Example #24
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_to_dense_fill_value(self):
        s = pd.Series([1, np.nan, np.nan, 3, np.nan])
        res = SparseSeries(s).to_dense()
        tm.assert_series_equal(res, s)

        res = SparseSeries(s, fill_value=0).to_dense()
        tm.assert_series_equal(res, s)

        s = pd.Series([1, np.nan, 0, 3, 0])
        res = SparseSeries(s, fill_value=0).to_dense()
        tm.assert_series_equal(res, s)

        res = SparseSeries(s, fill_value=0).to_dense()
        tm.assert_series_equal(res, s)

        s = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan])
        res = SparseSeries(s).to_dense()
        tm.assert_series_equal(res, s)

        s = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan])
        res = SparseSeries(s, fill_value=0).to_dense()
        tm.assert_series_equal(res, s) 
Example #25
Source File: test_series.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_value_counts(self):
        vals = [1, 2, nan, 0, nan, 1, 2, nan, nan, 1, 2, 0, 1, 1]
        dense = pd.Series(vals, name='xx')

        sparse = pd.SparseSeries(vals, name='xx')
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False))

        sparse = pd.SparseSeries(vals, name='xx', fill_value=0)
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False)) 
Example #26
Source File: test_series.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_constructor_dict_datetime64_index(datetime_type):
    # GH 9456
    dates = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15']
    values = [42544017.198965244, 1234565, 40512335.181958228, -1]

    result = SparseSeries(dict(zip(map(datetime_type, dates), values)))
    expected = SparseSeries(values, map(pd.Timestamp, dates))

    tm.assert_sp_series_equal(result, expected) 
Example #27
Source File: test_indexing.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def test_getitem_ellipsis(self):
        # GH 9467
        s = pd.SparseSeries([1, np.nan, 2, 0, np.nan])
        tm.assert_sp_series_equal(s[...], s)

        s = pd.SparseSeries([1, np.nan, 2, 0, np.nan], fill_value=0)
        tm.assert_sp_series_equal(s[...], s) 
Example #28
Source File: test_series.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_concat_axis1_different_fill(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        sparse1 = pd.SparseSeries(val1, name='x')
        sparse2 = pd.SparseSeries(val2, name='y', fill_value=0)

        res = pd.concat([sparse1, sparse2], axis=1)
        exp = pd.concat([pd.Series(val1, name='x'),
                         pd.Series(val2, name='y')], axis=1)
        assert isinstance(res, pd.SparseDataFrame)
        tm.assert_frame_equal(res.to_dense(), exp) 
Example #29
Source File: test_series.py    From recruit with Apache License 2.0 5 votes vote down vote up
def _dense_series_compare(s, f):
    result = f(s)
    assert (isinstance(result, SparseSeries))
    dense_result = f(s.to_dense())
    tm.assert_series_equal(result.to_dense(), dense_result) 
Example #30
Source File: test_common.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_is_sparse(check_scipy):
    assert com.is_sparse(pd.SparseArray([1, 2, 3]))
    assert com.is_sparse(pd.SparseSeries([1, 2, 3]))

    assert not com.is_sparse(np.array([1, 2, 3]))

    if check_scipy:
        import scipy.sparse
        assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3]))