Python pandas.UInt64Index() Examples
The following are 30
code examples of pandas.UInt64Index().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: common.py From vnpy_crypto with MIT License | 6 votes |
def test_map_dictlike(self, mapper): index = self.create_index() if isinstance(index, (pd.CategoricalIndex, pd.IntervalIndex)): pytest.skip("skipping tests for {}".format(type(index))) identity = mapper(index.values, index) # we don't infer to UInt64 for a dict if isinstance(index, pd.UInt64Index) and isinstance(identity, dict): expected = index.astype('int64') else: expected = index result = index.map(identity) tm.assert_index_equal(result, expected) # empty mappable expected = pd.Index([np.nan] * len(index)) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected)
Example #2
Source File: common.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_map_dictlike(self, mapper): index = self.create_index() if isinstance(index, (pd.CategoricalIndex, pd.IntervalIndex)): pytest.skip("skipping tests for {}".format(type(index))) identity = mapper(index.values, index) # we don't infer to UInt64 for a dict if isinstance(index, pd.UInt64Index) and isinstance(identity, dict): expected = index.astype('int64') else: expected = index result = index.map(identity) tm.assert_index_equal(result, expected) # empty mappable expected = pd.Index([np.nan] * len(index)) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected)
Example #3
Source File: test_numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_get_indexer(self): target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 2, 3, 4, 4, 4, 4, 4], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected)
Example #4
Source File: test_numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_constructor(self): idx = UInt64Index([1, 2, 3]) res = Index([1, 2, 3], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2**63]) res = Index([1, 2**63], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2**63]) res = Index([1, 2**63]) tm.assert_index_equal(res, idx) idx = Index([-1, 2**63], dtype=object) res = Index(np.array([-1, 2**63], dtype=object)) tm.assert_index_equal(res, idx)
Example #5
Source File: test_analytics.py From coffeegrindsize with MIT License | 6 votes |
def test_map_dictlike(idx, mapper): if isinstance(idx, (pd.CategoricalIndex, pd.IntervalIndex)): pytest.skip("skipping tests for {}".format(type(idx))) identity = mapper(idx.values, idx) # we don't infer to UInt64 for a dict if isinstance(idx, pd.UInt64Index) and isinstance(identity, dict): expected = idx.astype('int64') else: expected = idx result = idx.map(identity) tm.assert_index_equal(result, expected) # empty mappable expected = pd.Index([np.nan] * len(idx)) result = idx.map(mapper(expected, idx)) tm.assert_index_equal(result, expected)
Example #6
Source File: test_numeric.py From recruit with Apache License 2.0 | 6 votes |
def test_constructor(self): idx = UInt64Index([1, 2, 3]) res = Index([1, 2, 3], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2**63]) res = Index([1, 2**63], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2**63]) res = Index([1, 2**63]) tm.assert_index_equal(res, idx) idx = Index([-1, 2**63], dtype=object) res = Index(np.array([-1, 2**63], dtype=object)) tm.assert_index_equal(res, idx)
Example #7
Source File: test_numeric.py From recruit with Apache License 2.0 | 6 votes |
def test_get_indexer(self): target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 2, 3, 4, 4, 4, 4, 4], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected)
Example #8
Source File: test_analytics.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_map_dictlike(idx, mapper): if isinstance(idx, (pd.CategoricalIndex, pd.IntervalIndex)): pytest.skip("skipping tests for {}".format(type(idx))) identity = mapper(idx.values, idx) # we don't infer to UInt64 for a dict if isinstance(idx, pd.UInt64Index) and isinstance(identity, dict): expected = idx.astype('int64') else: expected = idx result = idx.map(identity) tm.assert_index_equal(result, expected) # empty mappable expected = pd.Index([np.nan] * len(idx)) result = idx.map(mapper(expected, idx)) tm.assert_index_equal(result, expected)
Example #9
Source File: test_numeric.py From coffeegrindsize with MIT License | 6 votes |
def test_constructor(self): idx = UInt64Index([1, 2, 3]) res = Index([1, 2, 3], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2**63]) res = Index([1, 2**63], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2**63]) res = Index([1, 2**63]) tm.assert_index_equal(res, idx) idx = Index([-1, 2**63], dtype=object) res = Index(np.array([-1, 2**63], dtype=object)) tm.assert_index_equal(res, idx)
Example #10
Source File: test_analytics.py From recruit with Apache License 2.0 | 6 votes |
def test_map_dictlike(idx, mapper): if isinstance(idx, (pd.CategoricalIndex, pd.IntervalIndex)): pytest.skip("skipping tests for {}".format(type(idx))) identity = mapper(idx.values, idx) # we don't infer to UInt64 for a dict if isinstance(idx, pd.UInt64Index) and isinstance(identity, dict): expected = idx.astype('int64') else: expected = idx result = idx.map(identity) tm.assert_index_equal(result, expected) # empty mappable expected = pd.Index([np.nan] * len(idx)) result = idx.map(mapper(expected, idx)) tm.assert_index_equal(result, expected)
Example #11
Source File: test_numeric.py From coffeegrindsize with MIT License | 6 votes |
def test_get_indexer(self): target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target) expected = np.array([0, -1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='pad') expected = np.array([0, 0, 1, 2, 3, 4, 4, 4, 4, 4], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected) target = UInt64Index(np.arange(10).astype('uint64') * 5 + 2**63) indexer = self.index.get_indexer(target, method='backfill') expected = np.array([0, 1, 1, 2, 3, 4, -1, -1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(indexer, expected)
Example #12
Source File: common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_map(self): # callable index = self.create_index() # we don't infer UInt64 if isinstance(index, pd.UInt64Index): expected = index.astype('int64') else: expected = index result = index.map(lambda x: x) tm.assert_index_equal(result, expected)
Example #13
Source File: test_generic.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset)
Example #14
Source File: common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_hasnans_isnans(self): # GH 11343, added tests for hasnans / isnans for name, index in self.indices.items(): if isinstance(index, MultiIndex): pass else: idx = index.copy() # cases in indices doesn't include NaN expected = np.array([False] * len(idx), dtype=bool) tm.assert_numpy_array_equal(idx._isnan, expected) assert not idx.hasnans idx = index.copy() values = idx.values if len(index) == 0: continue elif isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans
Example #15
Source File: test_astype.py From coffeegrindsize with MIT License | 5 votes |
def test_astype_uint(self): arr = date_range('2000', periods=2) expected = pd.UInt64Index( np.array([946684800000000000, 946771200000000000], dtype="uint64") ) tm.assert_index_equal(arr.astype("uint64"), expected) tm.assert_index_equal(arr.astype("uint32"), expected)
Example #16
Source File: test_astype.py From coffeegrindsize with MIT License | 5 votes |
def test_astype_uint(self): arr = period_range('2000', periods=2) expected = pd.UInt64Index(np.array([10957, 10958], dtype='uint64')) tm.assert_index_equal(arr.astype("uint64"), expected) tm.assert_index_equal(arr.astype("uint32"), expected)
Example #17
Source File: test_missing.py From coffeegrindsize with MIT License | 5 votes |
def test_fillna(idx): # GH 11343 # TODO: Remove or Refactor. Not Implemented for MultiIndex for name, index in [('idx', idx), ]: if len(index) == 0: pass elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.fillna(idx[0]) else: idx = index.copy() result = idx.fillna(idx[0]) tm.assert_index_equal(result, idx) assert result is not idx msg = "'value' must be a scalar, passed: " with pytest.raises(TypeError, match=msg): idx.fillna([idx[0]]) idx = index.copy() values = idx.values if isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True
Example #18
Source File: common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_fillna(self): # GH 11343 for name, index in self.indices.items(): if len(index) == 0: pass elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with tm.assert_raises_regex(NotImplementedError, msg): idx.fillna(idx[0]) else: idx = index.copy() result = idx.fillna(idx[0]) tm.assert_index_equal(result, idx) assert result is not idx msg = "'value' must be a scalar, passed: " with tm.assert_raises_regex(TypeError, msg): idx.fillna([idx[0]]) idx = index.copy() values = idx.values if isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans
Example #19
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)
Example #20
Source File: test_numeric.py From coffeegrindsize with MIT License | 5 votes |
def test_join_outer(self): other = UInt64Index(2**63 + np.array( [7, 12, 25, 1, 2, 10], dtype='uint64')) other_mono = UInt64Index(2**63 + np.array( [1, 2, 7, 10, 12, 25], dtype='uint64')) # not monotonic # guarantee of sortedness res, lidx, ridx = self.index.join(other, how='outer', return_indexers=True) noidx_res = self.index.join(other, how='outer') tm.assert_index_equal(res, noidx_res) eres = UInt64Index(2**63 + np.array( [0, 1, 2, 7, 10, 12, 15, 20, 25], dtype='uint64')) elidx = np.array([0, -1, -1, -1, 1, -1, 2, 3, 4], dtype=np.intp) eridx = np.array([-1, 3, 4, 0, 5, 1, -1, -1, 2], dtype=np.intp) assert isinstance(res, UInt64Index) tm.assert_index_equal(res, eres) tm.assert_numpy_array_equal(lidx, elidx) tm.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='outer', return_indexers=True) noidx_res = self.index.join(other_mono, how='outer') tm.assert_index_equal(res, noidx_res) elidx = np.array([0, -1, -1, -1, 1, -1, 2, 3, 4], dtype=np.intp) eridx = np.array([-1, 0, 1, 2, 3, 4, -1, -1, 5], dtype=np.intp) assert isinstance(res, UInt64Index) tm.assert_index_equal(res, eres) tm.assert_numpy_array_equal(lidx, elidx) tm.assert_numpy_array_equal(ridx, eridx)
Example #21
Source File: test_numeric.py From coffeegrindsize with MIT License | 5 votes |
def setup_method(self, method): vals = [2**63, 2**63 + 10, 2**63 + 15, 2**63 + 20, 2**63 + 25] self.indices = dict(index=UInt64Index(vals), index_dec=UInt64Index(reversed(vals))) self.setup_indices()
Example #22
Source File: forecasting.py From sktime with BSD 3-Clause "New" or "Revised" License | 5 votes |
def check_time_index(time_index): """Check time index. Parameters ---------- time_index : pd.Index or np.array Returns ------- time_index : pd.Index """ if isinstance(time_index, np.ndarray): time_index = pd.Index(time_index) # period or datetime index are not support yet supported_index_types = (pd.RangeIndex, pd.Int64Index, pd.UInt64Index) if not isinstance(time_index, supported_index_types): raise NotImplementedError(f"{type(time_index)} is not supported, " f"please use one of " f"{supported_index_types} instead.") if not time_index.is_monotonic: raise ValueError( f"Time index must be sorted (monotonically increasing), " f"but found: {time_index}") return time_index
Example #23
Source File: test_numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_mul_int_series(self, numeric_idx): idx = numeric_idx didx = idx * idx arr_dtype = 'uint64' if isinstance(idx, pd.UInt64Index) else 'int64' result = idx * Series(np.arange(5, dtype=arr_dtype)) tm.assert_series_equal(result, Series(didx))
Example #24
Source File: test_numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_mul_int_array(self, numeric_idx): idx = numeric_idx didx = idx * idx result = idx * np.array(5, dtype='int64') tm.assert_index_equal(result, idx * 5) arr_dtype = 'uint64' if isinstance(idx, pd.UInt64Index) else 'int64' result = idx * np.arange(5, dtype=arr_dtype) tm.assert_index_equal(result, didx)
Example #25
Source File: test_dtypes.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_astype_column_metadata(self, dtype): # GH 19920 columns = pd.UInt64Index([100, 200, 300], name='foo') df = DataFrame(np.arange(15).reshape(5, 3), columns=columns) df = df.astype(dtype) tm.assert_index_equal(df.columns, columns)
Example #26
Source File: test_indexing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_contains_with_float_index(self): # GH#22085 integer_index = pd.Int64Index([0, 1, 2, 3]) uinteger_index = pd.UInt64Index([0, 1, 2, 3]) float_index = pd.Float64Index([0.1, 1.1, 2.2, 3.3]) for index in (integer_index, uinteger_index): assert 1.1 not in index assert 1.0 in index assert 1 in index assert 1.1 in float_index assert 1.0 not in float_index assert 1 not in float_index
Example #27
Source File: test_missing.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_fillna(idx): # GH 11343 # TODO: Remove or Refactor. Not Implemented for MultiIndex for name, index in [('idx', idx), ]: if len(index) == 0: pass elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.fillna(idx[0]) else: idx = index.copy() result = idx.fillna(idx[0]) tm.assert_index_equal(result, idx) assert result is not idx msg = "'value' must be a scalar, passed: " with pytest.raises(TypeError, match=msg): idx.fillna([idx[0]]) idx = index.copy() values = idx.values if isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): continue else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = index.__class__(values, freq=index.freq) else: idx = index.__class__(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True
Example #28
Source File: test_astype.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_astype_uint(self): arr = period_range('2000', periods=2) expected = pd.UInt64Index(np.array([10957, 10958], dtype='uint64')) tm.assert_index_equal(arr.astype("uint64"), expected) tm.assert_index_equal(arr.astype("uint32"), expected)
Example #29
Source File: test_astype.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_astype_uint(self): arr = date_range('2000', periods=2) expected = pd.UInt64Index( np.array([946684800000000000, 946771200000000000], dtype="uint64") ) tm.assert_index_equal(arr.astype("uint64"), expected) tm.assert_index_equal(arr.astype("uint32"), expected)
Example #30
Source File: test_numeric.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_join_outer(self): other = UInt64Index(2**63 + np.array( [7, 12, 25, 1, 2, 10], dtype='uint64')) other_mono = UInt64Index(2**63 + np.array( [1, 2, 7, 10, 12, 25], dtype='uint64')) # not monotonic # guarantee of sortedness res, lidx, ridx = self.index.join(other, how='outer', return_indexers=True) noidx_res = self.index.join(other, how='outer') tm.assert_index_equal(res, noidx_res) eres = UInt64Index(2**63 + np.array( [0, 1, 2, 7, 10, 12, 15, 20, 25], dtype='uint64')) elidx = np.array([0, -1, -1, -1, 1, -1, 2, 3, 4], dtype=np.intp) eridx = np.array([-1, 3, 4, 0, 5, 1, -1, -1, 2], dtype=np.intp) assert isinstance(res, UInt64Index) tm.assert_index_equal(res, eres) tm.assert_numpy_array_equal(lidx, elidx) tm.assert_numpy_array_equal(ridx, eridx) # monotonic res, lidx, ridx = self.index.join(other_mono, how='outer', return_indexers=True) noidx_res = self.index.join(other_mono, how='outer') tm.assert_index_equal(res, noidx_res) elidx = np.array([0, -1, -1, -1, 1, -1, 2, 3, 4], dtype=np.intp) eridx = np.array([-1, 0, 1, 2, 3, 4, -1, -1, 5], dtype=np.intp) assert isinstance(res, UInt64Index) tm.assert_index_equal(res, eres) tm.assert_numpy_array_equal(lidx, elidx) tm.assert_numpy_array_equal(ridx, eridx)