Python pandas.plotting() Examples
The following are 15
code examples of pandas.plotting().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: plotting.py From modin with Apache License 2.0 | 6 votes |
def __getattribute__(self, item): """This method will override the parameters passed and convert any Modin DataFrames to pandas so that they can be plotted normally """ if hasattr(pdplot, item): func = getattr(pdplot, item) if callable(func): def wrap_func(*args, **kwargs): """Convert Modin DataFrames to pandas then call the function""" args = tuple( arg if not isinstance(arg, DataFrame) else to_pandas(arg) for arg in args ) kwargs = { kwd: val if not isinstance(val, DataFrame) else to_pandas(val) for kwd, val in kwargs.items() } return func(*args, **kwargs) return wrap_func else: return func else: return object.__getattribute__(self, item)
Example #2
Source File: common.py From recruit with Apache License 2.0 | 5 votes |
def setup_method(self, method): import matplotlib as mpl mpl.rcdefaults() self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1() self.mpl_ge_2_1_0 = plotting._compat._mpl_ge_2_1_0() self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0() self.mpl_ge_2_2_2 = plotting._compat._mpl_ge_2_2_2() self.mpl_ge_3_0_0 = plotting._compat._mpl_ge_3_0_0() self.bp_n_objects = 7 self.polycollection_factor = 2 self.default_figsize = (6.4, 4.8) self.default_tick_position = 'left' n = 100 with tm.RNGContext(42): gender = np.random.choice(['Male', 'Female'], size=n) classroom = np.random.choice(['A', 'B', 'C'], size=n) self.hist_df = DataFrame({'gender': gender, 'classroom': classroom, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame({"A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform( size=20)})
Example #3
Source File: common.py From vnpy_crypto with MIT License | 5 votes |
def _ok_for_gaussian_kde(kind): if kind in ['kde', 'density']: try: from scipy.stats import gaussian_kde # noqa except ImportError: return False return plotting._compat._mpl_ge_1_5_0()
Example #4
Source File: plotting.py From vnpy_crypto with MIT License | 5 votes |
def outer(t=t): def wrapper(*args, **kwargs): warnings.warn("'pandas.tools.plotting.{t}' is deprecated, " "import 'pandas.plotting.{t}' instead.".format(t=t), FutureWarning, stacklevel=2) return getattr(_plotting, t)(*args, **kwargs) return wrapper
Example #5
Source File: common.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def setup_method(self, method): import matplotlib as mpl mpl.rcdefaults() self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1() self.mpl_ge_2_1_0 = plotting._compat._mpl_ge_2_1_0() self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0() self.mpl_ge_2_2_2 = plotting._compat._mpl_ge_2_2_2() self.mpl_ge_3_0_0 = plotting._compat._mpl_ge_3_0_0() self.bp_n_objects = 7 self.polycollection_factor = 2 self.default_figsize = (6.4, 4.8) self.default_tick_position = 'left' n = 100 with tm.RNGContext(42): gender = np.random.choice(['Male', 'Female'], size=n) classroom = np.random.choice(['A', 'B', 'C'], size=n) self.hist_df = DataFrame({'gender': gender, 'classroom': classroom, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame({"A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform( size=20)})
Example #6
Source File: plotting.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def outer(t=t): def wrapper(*args, **kwargs): warnings.warn("'pandas.tools.plotting.{t}' is deprecated, " "import 'pandas.plotting.{t}' instead.".format(t=t), FutureWarning, stacklevel=2) return getattr(_plotting, t)(*args, **kwargs) return wrapper
Example #7
Source File: utils.py From fractional-differentiation-time-series with MIT License | 5 votes |
def plot_multi(data, cols=None, spacing=.1, **kwargs): from pandas import plotting # Get default color style from pandas - can be changed to any other color list if cols is None: cols = data.columns if len(cols) == 0: return colors = getattr(getattr(plotting, '_style'), '_get_standard_colors')(num_colors=len(cols)) # First axis ax = data.loc[:, cols[0]].plot(label=cols[0], color=colors[0], **kwargs) ax.set_ylabel(ylabel=cols[0]) lines, labels = ax.get_legend_handles_labels() for n in range(1, len(cols)): # Multiple y-axes ax_new = ax.twinx() ax_new.spines['right'].set_position(('axes', 1 + spacing * (n - 1))) data.loc[:, cols[n]].plot(ax=ax_new, label=cols[n], color=colors[n % len(colors)]) ax_new.set_ylabel(ylabel=cols[n]) # Proper legend position line, label = ax_new.get_legend_handles_labels() lines += line labels += label ax.legend(lines, labels, loc=0) return ax
Example #8
Source File: common.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _ok_for_gaussian_kde(kind): if kind in ['kde', 'density']: try: from scipy.stats import gaussian_kde # noqa except ImportError: return False return plotting._compat._mpl_ge_1_5_0()
Example #9
Source File: plotting.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def outer(t=t): def wrapper(*args, **kwargs): warnings.warn("'pandas.tools.plotting.{t}' is deprecated, " "import 'pandas.plotting.{t}' instead.".format(t=t), FutureWarning, stacklevel=2) return getattr(_plotting, t)(*args, **kwargs) return wrapper
Example #10
Source File: plotting.py From modin with Apache License 2.0 | 5 votes |
def __dir__(self): """This allows tab completion of plotting library""" return dir(pdplot)
Example #11
Source File: common.py From coffeegrindsize with MIT License | 5 votes |
def setup_method(self, method): import matplotlib as mpl mpl.rcdefaults() self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1() self.mpl_ge_2_1_0 = plotting._compat._mpl_ge_2_1_0() self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0() self.mpl_ge_2_2_2 = plotting._compat._mpl_ge_2_2_2() self.mpl_ge_3_0_0 = plotting._compat._mpl_ge_3_0_0() self.bp_n_objects = 7 self.polycollection_factor = 2 self.default_figsize = (6.4, 4.8) self.default_tick_position = 'left' n = 100 with tm.RNGContext(42): gender = np.random.choice(['Male', 'Female'], size=n) classroom = np.random.choice(['A', 'B', 'C'], size=n) self.hist_df = DataFrame({'gender': gender, 'classroom': classroom, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame({"A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform( size=20)})
Example #12
Source File: common.py From twitter-stock-recommendation with MIT License | 5 votes |
def _ok_for_gaussian_kde(kind): if kind in ['kde', 'density']: try: from scipy.stats import gaussian_kde # noqa except ImportError: return False return plotting._compat._mpl_ge_1_5_0()
Example #13
Source File: common.py From vnpy_crypto with MIT License | 4 votes |
def setup_method(self, method): import matplotlib as mpl mpl.rcdefaults() self.mpl_le_1_2_1 = plotting._compat._mpl_le_1_2_1() self.mpl_ge_1_3_1 = plotting._compat._mpl_ge_1_3_1() self.mpl_ge_1_4_0 = plotting._compat._mpl_ge_1_4_0() self.mpl_ge_1_5_0 = plotting._compat._mpl_ge_1_5_0() self.mpl_ge_2_0_0 = plotting._compat._mpl_ge_2_0_0() self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1() self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0() if self.mpl_ge_1_4_0: self.bp_n_objects = 7 else: self.bp_n_objects = 8 if self.mpl_ge_1_5_0: # 1.5 added PolyCollections to legend handler # so we have twice as many items. self.polycollection_factor = 2 else: self.polycollection_factor = 1 if self.mpl_ge_2_0_0: self.default_figsize = (6.4, 4.8) else: self.default_figsize = (8.0, 6.0) self.default_tick_position = 'left' if self.mpl_ge_2_0_0 else 'default' n = 100 with tm.RNGContext(42): gender = np.random.choice(['Male', 'Female'], size=n) classroom = np.random.choice(['A', 'B', 'C'], size=n) self.hist_df = DataFrame({'gender': gender, 'classroom': classroom, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame({"A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform( size=20)})
Example #14
Source File: common.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def setup_method(self, method): import matplotlib as mpl mpl.rcdefaults() self.mpl_le_1_2_1 = plotting._compat._mpl_le_1_2_1() self.mpl_ge_1_3_1 = plotting._compat._mpl_ge_1_3_1() self.mpl_ge_1_4_0 = plotting._compat._mpl_ge_1_4_0() self.mpl_ge_1_5_0 = plotting._compat._mpl_ge_1_5_0() self.mpl_ge_2_0_0 = plotting._compat._mpl_ge_2_0_0() self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1() if self.mpl_ge_1_4_0: self.bp_n_objects = 7 else: self.bp_n_objects = 8 if self.mpl_ge_1_5_0: # 1.5 added PolyCollections to legend handler # so we have twice as many items. self.polycollection_factor = 2 else: self.polycollection_factor = 1 if self.mpl_ge_2_0_0: self.default_figsize = (6.4, 4.8) else: self.default_figsize = (8.0, 6.0) self.default_tick_position = 'left' if self.mpl_ge_2_0_0 else 'default' # common test data from pandas import read_csv base = os.path.join(os.path.dirname(curpath()), os.pardir) path = os.path.join(base, 'tests', 'data', 'iris.csv') self.iris = read_csv(path) n = 100 with tm.RNGContext(42): gender = np.random.choice(['Male', 'Female'], size=n) classroom = np.random.choice(['A', 'B', 'C'], size=n) self.hist_df = DataFrame({'gender': gender, 'classroom': classroom, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame({"A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform( size=20)})
Example #15
Source File: common.py From twitter-stock-recommendation with MIT License | 4 votes |
def setup_method(self, method): import matplotlib as mpl mpl.rcdefaults() self.mpl_le_1_2_1 = plotting._compat._mpl_le_1_2_1() self.mpl_ge_1_3_1 = plotting._compat._mpl_ge_1_3_1() self.mpl_ge_1_4_0 = plotting._compat._mpl_ge_1_4_0() self.mpl_ge_1_5_0 = plotting._compat._mpl_ge_1_5_0() self.mpl_ge_2_0_0 = plotting._compat._mpl_ge_2_0_0() self.mpl_ge_2_0_1 = plotting._compat._mpl_ge_2_0_1() self.mpl_ge_2_2_0 = plotting._compat._mpl_ge_2_2_0() if self.mpl_ge_1_4_0: self.bp_n_objects = 7 else: self.bp_n_objects = 8 if self.mpl_ge_1_5_0: # 1.5 added PolyCollections to legend handler # so we have twice as many items. self.polycollection_factor = 2 else: self.polycollection_factor = 1 if self.mpl_ge_2_0_0: self.default_figsize = (6.4, 4.8) else: self.default_figsize = (8.0, 6.0) self.default_tick_position = 'left' if self.mpl_ge_2_0_0 else 'default' n = 100 with tm.RNGContext(42): gender = np.random.choice(['Male', 'Female'], size=n) classroom = np.random.choice(['A', 'B', 'C'], size=n) self.hist_df = DataFrame({'gender': gender, 'classroom': classroom, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) self.tdf = tm.makeTimeDataFrame() self.hexbin_df = DataFrame({"A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform( size=20)})