Python pandas.offsets() Examples
The following are 30
code examples of pandas.offsets().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas
, or try the search function
.
Example #1
Source File: test_datetime64.py From recruit with Apache License 2.0 | 6 votes |
def test_dti_add_offset_index(self, tz_naive_fixture, names): # GH#18849, GH#19744 tz = tz_naive_fixture dti = pd.date_range('2017-01-01', periods=2, tz=tz, name=names[0]) other = pd.Index([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) with tm.assert_produces_warning(PerformanceWarning, clear=[pd.core.arrays.datetimelike]): res = dti + other expected = DatetimeIndex([dti[n] + other[n] for n in range(len(dti))], name=names[2], freq='infer') tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning, clear=[pd.core.arrays.datetimelike]): res2 = other + dti tm.assert_index_equal(res2, expected)
Example #2
Source File: test_timedelta64.py From recruit with Apache License 2.0 | 6 votes |
def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected)
Example #3
Source File: test_datetime64.py From recruit with Apache License 2.0 | 6 votes |
def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) expected = Series([Timestamp('20130101 9:00:55'), Timestamp('20130101 9:01:55')]) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) with pytest.raises(TypeError): pd.offsets.Second(5) - ser
Example #4
Source File: test_timedelta64.py From recruit with Apache License 2.0 | 6 votes |
def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected)
Example #5
Source File: test_timedelta64.py From recruit with Apache License 2.0 | 6 votes |
def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box_with_array) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi
Example #6
Source File: test_timedelta64.py From recruit with Apache License 2.0 | 6 votes |
def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected)
Example #7
Source File: test_arithmetic.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_dt64_with_offset_array(klass, assert_func): # GH#10699 # array of offsets box = Series if klass is Series else pd.Index with tm.assert_produces_warning(PerformanceWarning): s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')]) result = s + box([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]) exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29')]) assert_func(result, exp) # same offset result = s + box([pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)]) exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')]) assert_func(result, exp)
Example #8
Source File: test_operators.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_dt64_series_add_mixed_tick_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp('20130101 9:07:00.005')]) assert_series_equal(result, expected)
Example #9
Source File: test_arithmetic.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_dti_with_offset_series(self, tz, names): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz, name=names[0]) other = Series([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) expected_add = Series([dti[n] + other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other tm.assert_series_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti tm.assert_series_equal(res2, expected_add) expected_sub = Series([dti[n] - other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res3 = dti - other tm.assert_series_equal(res3, expected_sub)
Example #10
Source File: test_datetime64.py From recruit with Apache License 2.0 | 6 votes |
def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp('20130101 9:07:00.005')]) tm.assert_series_equal(result, expected)
Example #11
Source File: test_arithmetic.py From vnpy_crypto with MIT License | 6 votes |
def test_dti_with_offset_series(self, tz, names): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz, name=names[0]) other = Series([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) expected_add = Series([dti[n] + other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other tm.assert_series_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti tm.assert_series_equal(res2, expected_add) expected_sub = Series([dti[n] - other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res3 = dti - other tm.assert_series_equal(res3, expected_sub)
Example #12
Source File: test_arithmetic.py From vnpy_crypto with MIT License | 6 votes |
def test_dt64_with_offset_array(klass, assert_func): # GH#10699 # array of offsets box = Series if klass is Series else pd.Index with tm.assert_produces_warning(PerformanceWarning): s = klass([Timestamp('2000-1-1'), Timestamp('2000-2-1')]) result = s + box([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]) exp = klass([Timestamp('2001-1-1'), Timestamp('2000-2-29')]) assert_func(result, exp) # same offset result = s + box([pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)]) exp = klass([Timestamp('2001-1-1'), Timestamp('2001-2-1')]) assert_func(result, exp)
Example #13
Source File: test_datetime64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_dti_add_offset_index(self, tz_naive_fixture, names): # GH#18849, GH#19744 tz = tz_naive_fixture dti = pd.date_range('2017-01-01', periods=2, tz=tz, name=names[0]) other = pd.Index([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) with tm.assert_produces_warning(PerformanceWarning, clear=[pd.core.arrays.datetimelike]): res = dti + other expected = DatetimeIndex([dti[n] + other[n] for n in range(len(dti))], name=names[2], freq='infer') tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning, clear=[pd.core.arrays.datetimelike]): res2 = other + dti tm.assert_index_equal(res2, expected)
Example #14
Source File: test_datetime64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp('20130101 9:07:00.005')]) tm.assert_series_equal(result, expected)
Example #15
Source File: test_operators.py From vnpy_crypto with MIT License | 6 votes |
def test_dt64_series_add_mixed_tick_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp('20130101 9:07:00.005')]) assert_series_equal(result, expected)
Example #16
Source File: test_datetime64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) expected = Series([Timestamp('20130101 9:00:55'), Timestamp('20130101 9:01:55')]) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) with pytest.raises(TypeError): pd.offsets.Second(5) - ser
Example #17
Source File: test_timedelta64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box_with_array) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi
Example #18
Source File: test_timedelta64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected)
Example #19
Source File: test_timedelta64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == 'bar': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected)
Example #20
Source File: test_timedelta64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected)
Example #21
Source File: test_arithmetic.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_datetime64_with_DateOffset(klass, assert_func): s = klass(date_range('2000-01-01', '2000-01-31'), name='a') result = s + pd.DateOffset(years=1) result2 = pd.DateOffset(years=1) + s exp = klass(date_range('2001-01-01', '2001-01-31'), name='a') assert_func(result, exp) assert_func(result2, exp) result = s - pd.DateOffset(years=1) exp = klass(date_range('1999-01-01', '1999-01-31'), name='a') assert_func(result, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = klass([Timestamp('2000-01-16 00:15:00', tz='US/Central'), Timestamp('2000-02-16', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = klass([Timestamp('2000-01-31 00:15:00', tz='US/Central'), Timestamp('2000-02-29', tz='US/Central')], name='a') assert_func(result, exp) assert_func(result2, exp)
Example #22
Source File: test_arithmetic.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_shift_months(years, months): s = DatetimeIndex([Timestamp('2000-01-05 00:15:00'), Timestamp('2000-01-31 00:23:00'), Timestamp('2000-01-01'), Timestamp('2000-02-29'), Timestamp('2000-12-31')]) actual = DatetimeIndex(shift_months(s.asi8, years * 12 + months)) raw = [x + pd.offsets.DateOffset(years=years, months=months) for x in s] expected = DatetimeIndex(raw) tm.assert_index_equal(actual, expected)
Example #23
Source File: test_datetime64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_dt64arr_add_sub_offset_ndarray(self, tz_naive_fixture, box_with_array): # GH#18849 if box_with_array is pd.DataFrame: pytest.xfail("FIXME: ValueError with transpose; " "alignment error without") tz = tz_naive_fixture dti = pd.date_range('2017-01-01', periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn, clear=[pd.core.arrays.datetimelike]): res = dtarr + other expected = DatetimeIndex([dti[n] + other[n] for n in range(len(dti))], name=dti.name, freq='infer') expected = tm.box_expected(expected, box_with_array) tm.assert_equal(res, expected) with tm.assert_produces_warning(warn, clear=[pd.core.arrays.datetimelike]): res2 = other + dtarr tm.assert_equal(res2, expected) with tm.assert_produces_warning(warn, clear=[pd.core.arrays.datetimelike]): res = dtarr - other expected = DatetimeIndex([dti[n] - other[n] for n in range(len(dti))], name=dti.name, freq='infer') expected = tm.box_expected(expected, box_with_array) tm.assert_equal(res, expected)
Example #24
Source File: test_datetime64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == 'US/Pacific': dates = date_range('2012-11-01', periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range('2010-11-01 00:00', periods=3, tz=tz, freq='H') expected = DatetimeIndex(['2010-11-01 05:00', '2010-11-01 06:00', '2010-11-01 07:00'], freq='H', tz=tz) # FIXME: these raise ValueError with transpose=True dates = tm.box_expected(dates, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) # TODO: parametrize over the scalar being added? radd? sub? offset = dates + pd.offsets.Hour(5) tm.assert_equal(offset, expected) offset = dates + np.timedelta64(5, 'h') tm.assert_equal(offset, expected) offset = dates + timedelta(hours=5) tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets
Example #25
Source File: test_datetime64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5)
Example #26
Source File: test_operators.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td
Example #27
Source File: test_operators.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_dt64_series_sub_tick_DateOffset(self): # GH 4532 # operate with pd.offsets ser = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) expected = Series([Timestamp('20130101 9:00:55'), Timestamp('20130101 9:01:55')]) result = ser - pd.offsets.Second(5) assert_series_equal(result, expected) result2 = -pd.offsets.Second(5) + ser assert_series_equal(result2, expected) with pytest.raises(TypeError): pd.offsets.Second(5) - ser
Example #28
Source File: test_operators.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_dt64_series_with_tick_DateOffset_smoke(self, cls_name): # GH 4532 # smoke tests for valid DateOffsets ser = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser
Example #29
Source File: test_timedelta64.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate
Example #30
Source File: test_ops.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx