Python PIL.__version__() Examples
The following are 30
code examples of PIL.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
PIL
, or try the search function
.
Example #1
Source File: starts.py From AutoDL-Projects with MIT License | 6 votes |
def prepare_logger(xargs): args = copy.deepcopy( xargs ) from log_utils import Logger logger = Logger(args.save_dir, args.rand_seed) logger.log('Main Function with logger : {:}'.format(logger)) logger.log('Arguments : -------------------------------') for name, value in args._get_kwargs(): logger.log('{:16} : {:}'.format(name, value)) logger.log("Python Version : {:}".format(sys.version.replace('\n', ' '))) logger.log("Pillow Version : {:}".format(PIL.__version__)) logger.log("PyTorch Version : {:}".format(torch.__version__)) logger.log("cuDNN Version : {:}".format(torch.backends.cudnn.version())) logger.log("CUDA available : {:}".format(torch.cuda.is_available())) logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count())) logger.log("CUDA_VISIBLE_DEVICES : {:}".format(os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ else 'None')) return logger
Example #2
Source File: window.py From ImEditor with GNU General Public License v3.0 | 6 votes |
def about(self, *args): dialog = Gtk.AboutDialog(transient_for=self) dialog.set_logo_icon_name('io.github.ImEditor') dialog.set_program_name('ImEditor') dialog.set_version('0.9.4') dialog.set_website('https://imeditor.github.io') dialog.set_authors(['Nathan Seva', 'Hugo Posnic']) gtk_version = '{}.{}.{}'.format(Gtk.get_major_version(), Gtk.get_minor_version(), Gtk.get_micro_version()) comment = '{}\n\n'.format(_("Simple & versatile image editor")) comment += 'Gtk: {} Pillow: {}'.format(gtk_version, pil_version) dialog.set_comments(comment) text = _("Distributed under the GNU GPL(v3) license.\n") text += 'https://github.com/ImEditor/ImEditor/blob/master/LICENSE\n' dialog.set_license(text) dialog.run() dialog.destroy()
Example #3
Source File: version_info.py From nml with GNU General Public License v2.0 | 6 votes |
def get_nml_version(): # First check if this is a git repository, and use that version if available. # (unless this is a released tarball, see below) try: from nml import version_update version = version_update.get_git_version() if version: return version except ImportError: # version_update is excluded from release tarballs, # so that the predetermined version is always used. pass # No repository was found. Return the version which was saved upon build. try: from nml import __version__ version = __version__.version except ImportError: version = 'unknown' return version
Example #4
Source File: version_info.py From nml with GNU General Public License v2.0 | 6 votes |
def get_lib_versions(): versions = {} #PIL try: import PIL versions["PIL"] = PIL.__version__ except ImportError: versions["PIL"] = "Not found!" #PLY try: from ply import lex versions["PLY"] = lex.__version__ except ImportError: versions["PLY"] = "Not found!" return versions
Example #5
Source File: inference.py From sagemaker-tensorflow-serving-container with Apache License 2.0 | 6 votes |
def handler(data, context): """Handle request. Args: data (obj): the request data context (Context): an object containing request and configuration details Returns: (bytes, string): data to return to client, (optional) response content type """ # use the imported library print('pillow: {}\n{}'.format(PIL.__version__, dir(_imaging))) processed_input = _process_input(data, context) response = requests.post(context.rest_uri, data=processed_input) return _process_output(response, context)
Example #6
Source File: PrerequisitesCheckerGramplet.py From addons-source with GNU General Public License v2.0 | 6 votes |
def check6_bsddb3(self): '''bsddb3 - Python Bindings for Oracle Berkeley DB requires Berkeley DB PY_BSDDB3_VER_MIN = (6, 0, 1) # 6.x series at least ''' self.append_text("\n") # Start check try: import bsddb3 as bsddb bsddb_str = bsddb.__version__ # Python adaptation layer # Underlying DB library bsddb_db_str = str(bsddb.db.version()).replace(', ', '.')\ .replace('(', '').replace(')', '') except ImportError: bsddb_str = 'not found' bsddb_db_str = 'not found' result = ("* Berkeley Database library (bsddb3: " + bsddb_db_str + ") (Python-bsddb3 : " + bsddb_str + ")") # End check self.append_text(result)
Example #7
Source File: PrerequisitesCheckerGramplet.py From addons-source with GNU General Public License v2.0 | 6 votes |
def check_fontconfig(self): ''' The python-fontconfig library is used to support the Genealogical Symbols tab of the Preferences. Without it Genealogical Symbols don't work ''' try: import fontconfig vers = fontconfig.__version__ if vers.startswith("0.5."): result = ("* python-fontconfig " + vers + " (Success version 0.5.x is installed.)") else: result = ("* python-fontconfig " + vers + " (Requires version 0.5.x)") except ImportError: result = "* python-fontconfig Not found, (Requires version 0.5.x)" # End check self.append_text(result) #Optional
Example #8
Source File: PrerequisitesCheckerGramplet.py From addons-source with GNU General Public License v2.0 | 6 votes |
def check23_pedigreechart(self): '''PedigreeChart - Can optionally use - NumPy if installed https://github.com/gramps-project/addons-source/blob/master/PedigreeChart/PedigreeChart.py ''' self.append_text("\n") self.render_text("""<b>03. <a href="https://gramps-project.org/wiki""" """/index.php?title=PedigreeChart">""" """Addon:PedigreeChart</a> :</b> """) # Start check try: import numpy numpy_ver = str(numpy.__version__) #print("numpy.__version__ :" + numpy_ver ) # NUMPY_check = True except ImportError: numpy_ver = "Not found" # NUMPY_check = False result = "(NumPy : " + numpy_ver + " )" # End check self.append_text(result) #self.append_text("\n")
Example #9
Source File: transforms.py From landmark-detection with MIT License | 6 votes |
def __call__(self, imgs, point_meta): """ Args: img (PIL.Image): Image to be cropped. point_meta : Point_Meta Returns: PIL.Image: Rotated image. """ point_meta = point_meta.copy() if isinstance(imgs, list): is_list = True else: is_list, imgs = False, [imgs] degree = (random.random() - 0.5) * 2 * self.max_rotate_degree center = (imgs[0].size[0] / 2, imgs[0].size[1] / 2) if PIL.__version__[0] == '4': imgs = [ img.rotate(degree, center=center) for img in imgs ] else: imgs = [ img.rotate(degree) for img in imgs ] point_meta.apply_rotate(center, degree) point_meta.apply_bound(imgs[0].size[0], imgs[0].size[1]) if is_list == False: imgs = imgs[0] return imgs, point_meta
Example #10
Source File: transforms.py From landmark-detection with MIT License | 6 votes |
def __call__(self, imgs, point_meta): """ Args: img (PIL.Image): Image to be cropped. point_meta : Point_Meta Returns: PIL.Image: Rotated image. """ point_meta = point_meta.copy() if isinstance(imgs, list): is_list = True else: is_list, imgs = False, [imgs] degree = (random.random() - 0.5) * 2 * self.max_rotate_degree center = (imgs[0].size[0] / 2, imgs[0].size[1] / 2) if PIL.__version__[0] == '4': imgs = [ img.rotate(degree, center=center) for img in imgs ] else: imgs = [ img.rotate(degree) for img in imgs ] point_meta.apply_rotate(center, degree) point_meta.apply_bound(imgs[0].size[0], imgs[0].size[1]) if is_list == False: imgs = imgs[0] return imgs, point_meta
Example #11
Source File: test_pyroma.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_pyroma(self): # Arrange data = pyroma.projectdata.get_data(".") # Act rating = pyroma.ratings.rate(data) # Assert if "rc" in __version__: # Pyroma needs to chill about RC versions and not kill all our tests. self.assertEqual( rating, (9, ["The package's version number does not comply with PEP-386."]), ) else: # Should have a near-perfect score self.assertEqual(rating, (9, ["Your package does not have license data."]))
Example #12
Source File: collect_env.py From training with Apache License 2.0 | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #13
Source File: starts.py From AutoDL-Projects with MIT License | 5 votes |
def get_machine_info(): info = "Python Version : {:}".format(sys.version.replace('\n', ' ')) info+= "\nPillow Version : {:}".format(PIL.__version__) info+= "\nPyTorch Version : {:}".format(torch.__version__) info+= "\ncuDNN Version : {:}".format(torch.backends.cudnn.version()) info+= "\nCUDA available : {:}".format(torch.cuda.is_available()) info+= "\nCUDA GPU numbers : {:}".format(torch.cuda.device_count()) if 'CUDA_VISIBLE_DEVICES' in os.environ: info+= "\nCUDA_VISIBLE_DEVICES={:}".format(os.environ['CUDA_VISIBLE_DEVICES']) else: info+= "\nDoes not set CUDA_VISIBLE_DEVICES" return info
Example #14
Source File: collect_env.py From FreeAnchor with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #15
Source File: osutils.py From Relation-Aware-Global-Attention-Networks with MIT License | 5 votes |
def collect_env_info(): """Returns env info as a string. Code source: github.com/facebookresearch/maskrcnn-benchmark """ from torch.utils.collect_env import get_pretty_env_info env_str = get_pretty_env_info() env_str += '\n Pillow ({})'.format(PIL.__version__) return env_str
Example #16
Source File: collect_env.py From retinamask with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #17
Source File: image_pyfunc.py From models with Apache License 2.0 | 5 votes |
def log_model(keras_model, artifact_path, image_dims, domain): """ Log a KerasImageClassifierPyfunc model as an MLflow artifact for the current run. :param keras_model: Keras model to be saved. :param artifact_path: Run-relative artifact path this model is to be saved to. :param image_dims: Image dimensions the Keras model expects. :param domain: Labels for the classes this model can predict. """ with TempDir() as tmp: data_path = tmp.path("image_model") os.mkdir(data_path) conf = { "image_dims": "/".join(map(str, image_dims)), "domain": "/".join(map(str, domain)) } with open(os.path.join(data_path, "conf.yaml"), "w") as f: yaml.safe_dump(conf, stream=f) keras_path = os.path.join(data_path, "keras_model") mlflow.keras.save_model(keras_model, path=keras_path) conda_env = tmp.path("conda_env.yaml") with open(conda_env, "w") as f: f.write(conda_env_template.format(python_version=PYTHON_VERSION, keras_version=keras.__version__, tf_name=tf.__name__, # can have optional -gpu suffix tf_version=tf.__version__, pillow_version=PIL.__version__)) mlflow.pyfunc.log_model(artifact_path=artifact_path, loader_module=__name__, code_path=[__file__], data_path=data_path, conda_env=conda_env)
Example #18
Source File: image_pyfunc.py From models with Apache License 2.0 | 5 votes |
def log_model(keras_model, artifact_path, image_dims, domain): """ Log a KerasImageClassifierPyfunc model as an MLflow artifact for the current run. :param keras_model: Keras model to be saved. :param artifact_path: Run-relative artifact path this model is to be saved to. :param image_dims: Image dimensions the Keras model expects. :param domain: Labels for the classes this model can predict. """ with TempDir() as tmp: data_path = tmp.path("image_model") os.mkdir(data_path) conf = { "image_dims": "/".join(map(str, image_dims)), "domain": "/".join(map(str, domain)) } with open(os.path.join(data_path, "conf.yaml"), "w") as f: yaml.safe_dump(conf, stream=f) keras_path = os.path.join(data_path, "keras_model") mlflow.keras.save_model(keras_model, path=keras_path) conda_env = tmp.path("conda_env.yaml") with open(conda_env, "w") as f: f.write(conda_env_template.format(python_version=PYTHON_VERSION, keras_version=keras.__version__, tf_name=tf.__name__, # can have optional -gpu suffix tf_version=tf.__version__, pillow_version=PIL.__version__)) mlflow.pyfunc.log_model(artifact_path=artifact_path, loader_module=__name__, code_path=[__file__], data_path=data_path, conda_env=conda_env)
Example #19
Source File: collect_env.py From Det3D with Apache License 2.0 | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #20
Source File: image_pyfunc.py From mlflow with Apache License 2.0 | 5 votes |
def log_model(keras_model, artifact_path, image_dims, domain): """ Log a KerasImageClassifierPyfunc model as an MLflow artifact for the current run. :param keras_model: Keras model to be saved. :param artifact_path: Run-relative artifact path this model is to be saved to. :param image_dims: Image dimensions the Keras model expects. :param domain: Labels for the classes this model can predict. """ with TempDir() as tmp: data_path = tmp.path("image_model") os.mkdir(data_path) conf = { "image_dims": "/".join(map(str, image_dims)), "domain": "/".join(map(str, domain)) } with open(os.path.join(data_path, "conf.yaml"), "w") as f: yaml.safe_dump(conf, stream=f) keras_path = os.path.join(data_path, "keras_model") mlflow.keras.save_model(keras_model, path=keras_path) conda_env = tmp.path("conda_env.yaml") with open(conda_env, "w") as f: f.write(conda_env_template.format(python_version=PYTHON_VERSION, keras_version=keras.__version__, tf_name=tf.__name__, # can have optional -gpu suffix tf_version=tf.__version__, pip_version=pip.__version__, pillow_version=PIL.__version__)) mlflow.pyfunc.log_model(artifact_path=artifact_path, loader_module=__name__, code_path=[__file__], data_path=data_path, conda_env=conda_env)
Example #21
Source File: collect_env.py From NAS-FCOS with BSD 2-Clause "Simplified" License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #22
Source File: collect_env.py From RRPN_pytorch with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #23
Source File: collect_env.py From DF-Traffic-Sign-Identification with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #24
Source File: collect_env.py From maskscoring_rcnn with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #25
Source File: collect_env.py From TinyBenchmark with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #26
Source File: collect_env.py From Res2Net-maskrcnn with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #27
Source File: collect_env.py From EmbedMask with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #28
Source File: collect_env.py From maskrcnn-benchmark with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)
Example #29
Source File: tools.py From deep-person-reid with MIT License | 5 votes |
def collect_env_info(): """Returns env info as a string. Code source: github.com/facebookresearch/maskrcnn-benchmark """ from torch.utils.collect_env import get_pretty_env_info env_str = get_pretty_env_info() env_str += '\n Pillow ({})'.format(PIL.__version__) return env_str
Example #30
Source File: collect_env.py From HRNet-MaskRCNN-Benchmark with MIT License | 5 votes |
def get_pil_version(): return "\n Pillow ({})".format(PIL.__version__)